Algorithmic solvability of word problem for some varieties of linear quasigroups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 227-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

The algorithmic word problem is solvable for free algebras in some varieties of linear quasigroups.
@article{FPM_2010_16_3_a11,
     author = {A. Kh. Tabarov},
     title = {Algorithmic solvability of word problem for some varieties of linear quasigroups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {227--236},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a11/}
}
TY  - JOUR
AU  - A. Kh. Tabarov
TI  - Algorithmic solvability of word problem for some varieties of linear quasigroups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 227
EP  - 236
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a11/
LA  - ru
ID  - FPM_2010_16_3_a11
ER  - 
%0 Journal Article
%A A. Kh. Tabarov
%T Algorithmic solvability of word problem for some varieties of linear quasigroups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 227-236
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a11/
%G ru
%F FPM_2010_16_3_a11
A. Kh. Tabarov. Algorithmic solvability of word problem for some varieties of linear quasigroups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 227-236. http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a11/

[1] Belousov V. D., “Uravnoveshennye tozhdestva v kvazigruppakh”, Mat. sb., 70(112):1 (1966), 55–97 | MR | Zbl

[2] Belousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, M., 1967 | MR | Zbl

[3] Belyavskaya G. B., Tabarov A. Kh., “Yadra i tsentr lineinykh kvazigrupp”, Izv. AN RM. Matematika, 1991, no. 3(6), 37–42 | MR

[4] Glukhov M. M., “O svobodnykh proizvedeniyakh i algoritmicheskikh problemakh v $R$-mnogoobraziyakh universalnykh algebr”, DAN SSSR, 193:3 (1970), 514–517 | MR | Zbl

[5] Glukhov M. M., “O svobodnykh kvazigruppakh nekotorykh mnogoobrazii i ikh multiplikativnykh gruppakh”, Mezhdunar. algebr. konf., posvyaschënnaya 100-letiyu so dnya rozhdeniya A. G. Kurosha, Tezisy dokladov, MGU im. M. V. Lomonosova, M., 2008, 68

[6] Glukhov M. M., Gvaramiya A. A., “Ob algoritmicheskikh problemakh dlya nekotorykh klassov kvazigrupp”, DAN SSSR, 177:1 (1967), 14–16 | Zbl

[7] Maltsev A. I., “Tozhdestvennye sootnosheniya na mnogoobraziyakh kvazigrupp”, Mat. sb., 69(111):1 (1966), 3–12 | MR | Zbl

[8] Sokhatskii F. N., Assotsiaty i razlozheniya mnogomestnykh operatsii, Dis. $\dots$ dokt. fiz.-mat. nauk, Kiev, 2006

[9] Tabarov A. Kh., “Postroenie svobodnykh lineinykh kvazigrupp”, Dokl. AN RT, 48:11–12 (2005), 22–28

[10] Belyavskaya G. B., Tabarov A. Kh., “One-sided $T$-quasigroups and irreducible balanced identities”, Quasigroups and Related Systems, 1:1 (1994), 8–21 | MR | Zbl

[11] Csacany B., “On the equivalence of certain classes of algebraic systems”, Acta Sci. Math. (Szeged), 23 (1962), 46–57 | MR

[12] Evans T., “The word problem for abstract algebras”, J. London Math. Soc., 28:1 (1951), 64–67 | DOI | MR

[13] Evans T., “The isomorphism problem for some classes of multiplicative systems”, Trans. Amer. Math. Soc., 109 (1963), 303–312 | DOI | MR | Zbl

[14] Jezek J., Kepka T., “Quasigroups isotopic to a group”, Comment. Math. Univ. Carolin., 16:1 (1975), 59–76 | MR | Zbl

[15] Jezek J., Kepka T., “Varieties of Abelian quasigroups”, Czech. Math. J., 27 (1977), 473–503 | MR | Zbl

[16] Kepka T., Nemec P., “$T$-quasigroups, I”, Acta Univ. Carolin. Math. Phys., 12:1 (1971), 31–39 | MR

[17] Kepka T., Nemec P., “$T$-quasigroups, II”, Acta Univ. Carolin. Math. Phys., 12:2 (1971), 39–49 | MR