Algorithmic solvability of word problem for some varieties of linear quasigroups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 227-236

Voir la notice de l'article provenant de la source Math-Net.Ru

The algorithmic word problem is solvable for free algebras in some varieties of linear quasigroups.
@article{FPM_2010_16_3_a11,
     author = {A. Kh. Tabarov},
     title = {Algorithmic solvability of word problem for some varieties of linear quasigroups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {227--236},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a11/}
}
TY  - JOUR
AU  - A. Kh. Tabarov
TI  - Algorithmic solvability of word problem for some varieties of linear quasigroups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 227
EP  - 236
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a11/
LA  - ru
ID  - FPM_2010_16_3_a11
ER  - 
%0 Journal Article
%A A. Kh. Tabarov
%T Algorithmic solvability of word problem for some varieties of linear quasigroups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 227-236
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a11/
%G ru
%F FPM_2010_16_3_a11
A. Kh. Tabarov. Algorithmic solvability of word problem for some varieties of linear quasigroups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 227-236. http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a11/