Isomorphisms of general linear groups over associative rings graded by an Abelian group
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 5-40
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we give a simpler proof of the Golubchik–Mikhalev–Zelmanov theorem on the structure of isomorphisms between general linear groups over associative rings, and also prove an extension of this theorem for linear groups over rings graded by an Abelian group.
@article{FPM_2010_16_3_a0,
author = {A. S. Atkarskaya and E. I. Bunina and A. V. Mikhalev},
title = {Isomorphisms of general linear groups over associative rings graded by an {Abelian} group},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {5--40},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a0/}
}
TY - JOUR AU - A. S. Atkarskaya AU - E. I. Bunina AU - A. V. Mikhalev TI - Isomorphisms of general linear groups over associative rings graded by an Abelian group JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2010 SP - 5 EP - 40 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a0/ LA - ru ID - FPM_2010_16_3_a0 ER -
%0 Journal Article %A A. S. Atkarskaya %A E. I. Bunina %A A. V. Mikhalev %T Isomorphisms of general linear groups over associative rings graded by an Abelian group %J Fundamentalʹnaâ i prikladnaâ matematika %D 2010 %P 5-40 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a0/ %G ru %F FPM_2010_16_3_a0
A. S. Atkarskaya; E. I. Bunina; A. V. Mikhalev. Isomorphisms of general linear groups over associative rings graded by an Abelian group. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 5-40. http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a0/