Isomorphisms of general linear groups over associative rings graded by an Abelian group
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 5-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we give a simpler proof of the Golubchik–Mikhalev–Zelmanov theorem on the structure of isomorphisms between general linear groups over associative rings, and also prove an extension of this theorem for linear groups over rings graded by an Abelian group.
@article{FPM_2010_16_3_a0,
     author = {A. S. Atkarskaya and E. I. Bunina and A. V. Mikhalev},
     title = {Isomorphisms of general linear groups over associative rings graded by an {Abelian} group},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {5--40},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a0/}
}
TY  - JOUR
AU  - A. S. Atkarskaya
AU  - E. I. Bunina
AU  - A. V. Mikhalev
TI  - Isomorphisms of general linear groups over associative rings graded by an Abelian group
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 5
EP  - 40
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a0/
LA  - ru
ID  - FPM_2010_16_3_a0
ER  - 
%0 Journal Article
%A A. S. Atkarskaya
%A E. I. Bunina
%A A. V. Mikhalev
%T Isomorphisms of general linear groups over associative rings graded by an Abelian group
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 5-40
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a0/
%G ru
%F FPM_2010_16_3_a0
A. S. Atkarskaya; E. I. Bunina; A. V. Mikhalev. Isomorphisms of general linear groups over associative rings graded by an Abelian group. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 3, pp. 5-40. http://geodesic.mathdoc.fr/item/FPM_2010_16_3_a0/

[1] Balaba I. N., “Izomorfizmy graduirovannykh kolets endomorfizmov proobrazuyuschikh”, Fundament. i prikl. mat., 13:1 (2007), 3–10 | MR | Zbl

[2] Golubchik I. Z., Lineinye gruppy nad assotsiativnymi koltsami, Dis. $\dots$ dokt. fiz.-mat. nauk, Ufa, 1997

[3] Golubchik I. Z., Mikhalëv A. V., “Izomorfizmy polnoi lineinoi gruppy nad assotsiativnym koltsom”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1983, no. 3, 61–72 | MR | Zbl

[4] Zelmanov E. I., “Izomorfizmy lineinykh grupp nad assotsiativnym koltsom”, Sib. mat. zhurn., 26:4 (1985), 49–67 | MR | Zbl

[5] Feis K., Koltsa, moduli, kategorii, Mir, M., 1979 | MR

[6] Nastasescu C., van Oystaeyen F., Graded Ring Theory, North-Holland, Amsterdam, 1982 | MR | Zbl