On one class of three-webs with covariantly constant curvature and torsion tensors
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 2, pp. 85-91
Voir la notice de l'article provenant de la source Math-Net.Ru
A special class of multidimensional three-webs $W^\nabla$ with covariantly constant curvature and torsion tensors is considered, the curvature tensor having the minimal rank. It is proved that there is a subfamily of adapted frames of the web $W^\nabla$ whose torsion tensor components are constant and the curvature tensor has a unique nonzero component. The structure equations of the webs of this class are found and some of their properties are described.
@article{FPM_2010_16_2_a8,
author = {L. M. Pidzhakova},
title = {On one class of three-webs with covariantly constant curvature and torsion tensors},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {85--91},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a8/}
}
TY - JOUR AU - L. M. Pidzhakova TI - On one class of three-webs with covariantly constant curvature and torsion tensors JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2010 SP - 85 EP - 91 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a8/ LA - ru ID - FPM_2010_16_2_a8 ER -
L. M. Pidzhakova. On one class of three-webs with covariantly constant curvature and torsion tensors. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 2, pp. 85-91. http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a8/