Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2010_16_2_a7, author = {L. N. Orlova}, title = {The geometry of a~quasilinear system of two partial differential equations containing the first and second partial derivatives of two functions in two independent variables}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {67--84}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a7/} }
TY - JOUR AU - L. N. Orlova TI - The geometry of a~quasilinear system of two partial differential equations containing the first and second partial derivatives of two functions in two independent variables JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2010 SP - 67 EP - 84 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a7/ LA - ru ID - FPM_2010_16_2_a7 ER -
%0 Journal Article %A L. N. Orlova %T The geometry of a~quasilinear system of two partial differential equations containing the first and second partial derivatives of two functions in two independent variables %J Fundamentalʹnaâ i prikladnaâ matematika %D 2010 %P 67-84 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a7/ %G ru %F FPM_2010_16_2_a7
L. N. Orlova. The geometry of a~quasilinear system of two partial differential equations containing the first and second partial derivatives of two functions in two independent variables. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 2, pp. 67-84. http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a7/
[1] Akramov T. A., Differentsialnye uravneniya i ikh prilozheniya k modelirovaniyu fiziko-khimicheskikh protsessov, Bashkirskii gos. un-t, Ufa, 2000
[2] Achkinadze A. Sh., Besyadovskii A. R., Kornev N. V., Faddeev Yu. I., Gidromekhanika, 2007
[3] Blyashke V., Vvedenie v geometriyu tkanei, Fizmatgiz, M., 1959 | MR
[4] Vasilev A. M., “Sistemy trëkh differentsialnykh uravnenii s chastnymi proizvodnymi pervogo poryadka pri trëkh neizvestnykh funktsiyakh i dvukh nezavisimykh peremennykh (lokalnaya teoriya)”, Mat. sb., 70(112):4 (1966), 457–480 | MR | Zbl
[5] Vasilev A. M., Differentsialno-geometricheskie struktury, Izd-vo Mosk. un-ta, M., 1987 | MR | Zbl
[6] Kartan E., Teoriya konechnykh nepreryvnykh grupp i differentsialnaya geometriya, izlozhennye metodom podvizhnogo repera, Izd-vo Mosk. un-ta, M., 1963
[7] Kartan E., Izbrannye trudy, MTsNMO, M., 1998
[8] Laptev G. F., “Differentsialnaya geometriya pogruzhënnykh mnogoobrazii”, Tr. MMO, 2, 1953, 275–382 | MR | Zbl
[9] Orlova L. N., “Sistema dvukh differentsialnykh uravnenii s chastnymi proizvodnymi pervogo i vtorogo poryadka pri dvukh neizvestnykh funktsiyakh i dvukh nezavisimykh peremennykh”, Uchënye zapiski Moskovsk. gos. in-ta im. V. I. Lenina, 271 (1967), 103–112 | MR
[10] Orlova L. N., “Geometriya kvazilineinoi sistemy dvukh differentsialnykh uravnenii s chastnymi proizvodnymi pervogo i vtorogo poryadka pri dvukh neizvestnykh funktsiyakh i dvukh nezavisimykh peremennykh”, Geometriya odnorodnykh prostranstv, Moskovsk. gos. in-t im. V. I. Lenina, M., 1976, 94–101
[11] Orlova L. N., “Geometriya kvazilineinoi sistemy dvukh differentsialnykh uravnenii s chastnymi proizvodnymi pervogo i vtorogo poryadka pri dvukh neizvestnykh funktsiyakh i dvukh nezavisimykh peremennykh”, Tr. mezhdunar. konf. “Geometriya v Odesse–2007”, 2007, 87–88
[12] Orlova L. N., “Geometriya kvazilineinoi sistemy dvukh differentsialnykh uravnenii s chastnymi proizvodnymi pervogo i vtorogo poryadka pri dvukh neizvestnykh funktsiyakh i dvukh nezavisimykh peremennykh”, Mat. zametki, 85:3 (2009), 421–432 | DOI | MR | Zbl
[13] Petrova L. I., Kososimmetrichnye differentsialnye formy: zakony sokhraneniya. Osnovy teorii polya, LENAND, M., 2006
[14] Finikov S. P., Metod vneshnikh form Kartana, Gostekhizdat, M.–L., 1948
[15] Kushner A., Lychagin V., Rubtsov V., Contact Geometry and Non-Linear Differential Equations, Cambridge Univ. Press, Cambridge, 2007 | MR | Zbl