The geometry of a~quasilinear system of two partial differential equations containing the first and second partial derivatives of two functions in two independent variables
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 2, pp. 67-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

The geometry of a system of two partial differential equations containing the first and second partial derivatives of two functions in two independent variables is studied by using the Cartan method of invariant forms and the group-theoretic method of extensions and enclosings due to G. F. Laptev (for finite groups) and A. M. Vasil'ev (for infinite groups). Systems of quasilinear equations with the first and second partial derivatives of two functions $u$ and $v$ in two independent variables $x$ and $y$ are classified.
@article{FPM_2010_16_2_a7,
     author = {L. N. Orlova},
     title = {The geometry of a~quasilinear system of two partial differential equations containing the first and second partial derivatives of two functions in two independent variables},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {67--84},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a7/}
}
TY  - JOUR
AU  - L. N. Orlova
TI  - The geometry of a~quasilinear system of two partial differential equations containing the first and second partial derivatives of two functions in two independent variables
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 67
EP  - 84
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a7/
LA  - ru
ID  - FPM_2010_16_2_a7
ER  - 
%0 Journal Article
%A L. N. Orlova
%T The geometry of a~quasilinear system of two partial differential equations containing the first and second partial derivatives of two functions in two independent variables
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 67-84
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a7/
%G ru
%F FPM_2010_16_2_a7
L. N. Orlova. The geometry of a~quasilinear system of two partial differential equations containing the first and second partial derivatives of two functions in two independent variables. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 2, pp. 67-84. http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a7/

[1] Akramov T. A., Differentsialnye uravneniya i ikh prilozheniya k modelirovaniyu fiziko-khimicheskikh protsessov, Bashkirskii gos. un-t, Ufa, 2000

[2] Achkinadze A. Sh., Besyadovskii A. R., Kornev N. V., Faddeev Yu. I., Gidromekhanika, 2007

[3] Blyashke V., Vvedenie v geometriyu tkanei, Fizmatgiz, M., 1959 | MR

[4] Vasilev A. M., “Sistemy trëkh differentsialnykh uravnenii s chastnymi proizvodnymi pervogo poryadka pri trëkh neizvestnykh funktsiyakh i dvukh nezavisimykh peremennykh (lokalnaya teoriya)”, Mat. sb., 70(112):4 (1966), 457–480 | MR | Zbl

[5] Vasilev A. M., Differentsialno-geometricheskie struktury, Izd-vo Mosk. un-ta, M., 1987 | MR | Zbl

[6] Kartan E., Teoriya konechnykh nepreryvnykh grupp i differentsialnaya geometriya, izlozhennye metodom podvizhnogo repera, Izd-vo Mosk. un-ta, M., 1963

[7] Kartan E., Izbrannye trudy, MTsNMO, M., 1998

[8] Laptev G. F., “Differentsialnaya geometriya pogruzhënnykh mnogoobrazii”, Tr. MMO, 2, 1953, 275–382 | MR | Zbl

[9] Orlova L. N., “Sistema dvukh differentsialnykh uravnenii s chastnymi proizvodnymi pervogo i vtorogo poryadka pri dvukh neizvestnykh funktsiyakh i dvukh nezavisimykh peremennykh”, Uchënye zapiski Moskovsk. gos. in-ta im. V. I. Lenina, 271 (1967), 103–112 | MR

[10] Orlova L. N., “Geometriya kvazilineinoi sistemy dvukh differentsialnykh uravnenii s chastnymi proizvodnymi pervogo i vtorogo poryadka pri dvukh neizvestnykh funktsiyakh i dvukh nezavisimykh peremennykh”, Geometriya odnorodnykh prostranstv, Moskovsk. gos. in-t im. V. I. Lenina, M., 1976, 94–101

[11] Orlova L. N., “Geometriya kvazilineinoi sistemy dvukh differentsialnykh uravnenii s chastnymi proizvodnymi pervogo i vtorogo poryadka pri dvukh neizvestnykh funktsiyakh i dvukh nezavisimykh peremennykh”, Tr. mezhdunar. konf. “Geometriya v Odesse–2007”, 2007, 87–88

[12] Orlova L. N., “Geometriya kvazilineinoi sistemy dvukh differentsialnykh uravnenii s chastnymi proizvodnymi pervogo i vtorogo poryadka pri dvukh neizvestnykh funktsiyakh i dvukh nezavisimykh peremennykh”, Mat. zametki, 85:3 (2009), 421–432 | DOI | MR | Zbl

[13] Petrova L. I., Kososimmetrichnye differentsialnye formy: zakony sokhraneniya. Osnovy teorii polya, LENAND, M., 2006

[14] Finikov S. P., Metod vneshnikh form Kartana, Gostekhizdat, M.–L., 1948

[15] Kushner A., Lychagin V., Rubtsov V., Contact Geometry and Non-Linear Differential Equations, Cambridge Univ. Press, Cambridge, 2007 | MR | Zbl