Lie jets and symmetries of prolongations of geometric objects
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 2, pp. 163-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Lie jet $\mathcal L_\theta\lambda$ of a field of geometric objects $\lambda$ on a smooth manifold $M$ with respect to a field $\theta$ of Weil $\mathbf A$-velocities is a generalization of the Lie derivative $\mathcal L_v\lambda$ of a field $\lambda$ with respect to a vector field $v$. In this paper, Lie jets $\mathcal L_\theta\lambda$ are applied to the study of $\mathbf A$-smooth diffeomorphisms on a Weil bundle $T^\mathbf AM$ of a smooth manifold $M$, which are symmetries of prolongations of geometric objects from $M$ to $T^\mathbf AM$. It is shown that vanishing of a Lie jet $\mathcal L_\theta\lambda$ is a necessary and sufficient condition for the prolongation $\lambda^\mathbf A$ of a field of geometric objects $\lambda$ to be invariant with respect to the transformation of the Weil bundle $T^\mathbf AM$ induced by the field $\theta$. The case of symmetries of prolongations of fields of geometric objects to the second-order tangent bundle $T^2M$ are considered in more detail.
@article{FPM_2010_16_2_a16,
     author = {V. V. Shurygin},
     title = {Lie jets and symmetries of prolongations of geometric objects},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {163--181},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a16/}
}
TY  - JOUR
AU  - V. V. Shurygin
TI  - Lie jets and symmetries of prolongations of geometric objects
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 163
EP  - 181
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a16/
LA  - ru
ID  - FPM_2010_16_2_a16
ER  - 
%0 Journal Article
%A V. V. Shurygin
%T Lie jets and symmetries of prolongations of geometric objects
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 163-181
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a16/
%G ru
%F FPM_2010_16_2_a16
V. V. Shurygin. Lie jets and symmetries of prolongations of geometric objects. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 2, pp. 163-181. http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a16/

[1] Atanasiu G., Balan V., Brynzei N., Rakhula M., Differentsialnaya geometriya vtorogo poryadka i prilozheniya: Teoriya Mirona–Atanasiu, Librokom, M., 2010

[2] Gainullin F. R., Shurygin V. V., “Golomorfnye tenzornye polya i lineinye svyaznosti na kasatelnom rassloenii vtorogo poryadka”, Uchënye zapiski Kazansk. un-ta. Ser. Fiz.-mat. nauki, 151, no. 1, 2009, 36–50 | Zbl

[3] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., “Differentsialno-geometricheskie struktury na mnogoobraziya”, Itogi nauki i tekhn. Ser. Probl. geom. Tr. geom. sem., 9, 1979, 5–246 | MR | Zbl

[4] Laptev B. L., “Differentsirovanie Li”, Itogi nauki i tekhn. Ser. Algebra. Topol. Geom. 1965, 1967, 429–465 | MR

[5] Matematicheskaya entsiklopediya, v. 3, Sovetskaya entsiklopediya, M., 1982

[6] Smolyakova L. B., Shurygin V. V., “Lifty geometricheskikh ob'ektov na rassloenie Veilya $T^\mu M$ sloënogo mnogoobraziya, opredelyaemoe epimorfizmom $\mu$ algebr Veilya”, Izv. vyssh. uchebn. zaved. Matematika, 2007, no. 10, 76–89 | MR

[7] Fomin V. E., Shurygin V. V., “Ocherk nauchnoi i pedagogicheskoi deyatelnosti A. P. Shirokova”, Uchënye zapiski Kazansk. un-ta. Ser. Fiz.-mat. nauki, 150, no. 1, 2008, 130–152 | Zbl

[8] Shirokov A. P., “Zamechanie o strukturakh v kasatelnykh rassloeniyakh”, Itogi nauki i tekhn. Ser. Probl. geom. Tr. geom. sem., 5, 1974, 311–318 | MR | Zbl

[9] Shirokov A. P., “Geometriya kasatelnykh rassloenii i prostranstva nad algebrami”, Itogi nauki i tekhn. Ser. Probl. geom. Tr. geom. sem., 12, 1981, 61–95 | MR | Zbl

[10] Shurygin V. V., “Mnogoobraziya nad algebrami i ikh primenenie v geometrii rassloenii strui”, Uspekhi mat. nauk, 48:2(290) (1993), 75–106 | MR | Zbl

[11] Bushueva G. N., Shurygin V. V., “On the higher-order geometry of Weil bundles over smooth manifolds and over parameter-dependent manifolds”, Lobachevskii J. Math., 18 (2005), 53–105 | MR | Zbl

[12] Kolář I., Michor P. W., Slovák J., Natural Operations in Differential Geometry, Springer, Berlin, 1993 | MR