On dual geometry of distributions of hyperplane elements in a space with affine connection
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 2, pp. 147-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, we found the condition of the existence of the dual space of affine connection if the regular distribution of hyperplane elements is immersed in a space of affine connection $A_{n,n}$. We consider dual affine connections induced by a regular distribution.
@article{FPM_2010_16_2_a14,
     author = {A. V. Khristoforova},
     title = {On dual geometry of distributions of hyperplane elements in a~space with affine connection},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {147--153},
     year = {2010},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a14/}
}
TY  - JOUR
AU  - A. V. Khristoforova
TI  - On dual geometry of distributions of hyperplane elements in a space with affine connection
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 147
EP  - 153
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a14/
LA  - ru
ID  - FPM_2010_16_2_a14
ER  - 
%0 Journal Article
%A A. V. Khristoforova
%T On dual geometry of distributions of hyperplane elements in a space with affine connection
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 147-153
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a14/
%G ru
%F FPM_2010_16_2_a14
A. V. Khristoforova. On dual geometry of distributions of hyperplane elements in a space with affine connection. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 2, pp. 147-153. http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a14/

[1] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., “Differentsialno-geometricheskie struktury na mnogoobraziyakh”, Itogi nauki i tekhn. Ser. Probl. geom. Tr. geom. sem., 9, 1979, 5–246 | MR | Zbl

[2] Laptev G. F., “O vydelenii odnogo klassa vnutrennikh geometrii, indutsirovannykh na poverkhnosti prostranstva affinnoi svyaznosti”, DAN SSSR, 41:8 (1943), 329–331 | MR

[3] Laptev G. F., “Differentsialnaya geometriya pogruzhënnykh mnogoobrazii”, Tr. MMO, 2, 1953, 275–382 | MR | Zbl

[4] Laptev G. F., Ostianu N. M., “Raspredeleniya $m$-mernykh lineinykh elementov v prostranstve proektivnoi svyaznosti”, Itogi nauki i tekhn. Ser. Probl. geom. Tr. geom. sem., 3, 1971, 49–94 | MR

[5] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976 | MR | Zbl

[6] Ostianu N. M., “Raspredelenie giperploskostnykh elementov v proektivnom prostranstve”, Itogi nauki i tekhn. Ser. Probl. geom. Tr. geom. sem., 4, 1973, 71–120 | MR | Zbl

[7] Stolyarov A. V., Dvoistvennaya teoriya osnaschënnykh mnogoobrazii, Cheboksary, 1994 | MR

[8] Stolyarov A. V., “Dvoistvennaya geometriya normalizovannogo prostranstva affinnoi svyaznosti”, Vestn. Chuvashsk. gos. ped. un-ta, 2005, no. 4, 21–27

[9] Cartan E., “Les éspaces a connexion projective”, Trudy seminara po vektornomu i tenzornomu analizu MGU, 4, 1937, 147–159 | Zbl

[10] Casanova G., “La notion de pôle harmonique”, Rev. Math. Spec., 65:6 (1955), 437–440