On infinitesimal automorphisms of almost contact metric lattices
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 2, pp. 129-137
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, three-dimensional maximum mobile almost contact manifolds are considered. In a special frame, we have obtained the form of structural objects for the case of constant $\varphi $-analytic curvature $H =-3$ of the first and also second and third classes of the Tanno theorem. Basis vector field of the Lie algebra of infinitesimal automorphisms for each of the considered structures and their commutators are found.
@article{FPM_2010_16_2_a12,
     author = {N. A. Tyapin},
     title = {On infinitesimal automorphisms of almost contact metric lattices},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {129--137},
     year = {2010},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a12/}
}
TY  - JOUR
AU  - N. A. Tyapin
TI  - On infinitesimal automorphisms of almost contact metric lattices
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 129
EP  - 137
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a12/
LA  - ru
ID  - FPM_2010_16_2_a12
ER  - 
%0 Journal Article
%A N. A. Tyapin
%T On infinitesimal automorphisms of almost contact metric lattices
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 129-137
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a12/
%G ru
%F FPM_2010_16_2_a12
N. A. Tyapin. On infinitesimal automorphisms of almost contact metric lattices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 2, pp. 129-137. http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a12/

[1] Kirichenko V. F., Differentsialno-geometricheskie struktury na mnogoobraziyakh, MPGU, M., 2003

[2] Blair D. E., Contact Manifolds in Riemannian Geometry, Lect. Notes Math., 509, Springer, Berlin, 1976 | MR | Zbl

[3] Tanno S., “The automorphism groups of almost contact Riemannian manifolds”, Tôhoku Math. J., 21:1 (1969), 21–38 | DOI | MR | Zbl