On the factor-web $\overline W(\rho,r,r)$ of the three-web $W(r,r,r)$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 2, pp. 115-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of the factor-web $\overline W(\rho,r,r)$ ($1\leq\rho$) is defined for the three-web $W(r,r,r)$ formed on a $2r$-dimensional differentiable manifold by three $r$-dimensional smooth foliations. Embedding of the factor-web in the initial web $W(r,r,r)$ is constructed. This construction is a well-known geometric analog of the canonical extension of a Lie group of transformations to its parameter group.
@article{FPM_2010_16_2_a11,
     author = {G. A. Tolstikhina},
     title = {On the factor-web $\overline W(\rho,r,r)$ of the three-web $W(r,r,r)$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {115--128},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a11/}
}
TY  - JOUR
AU  - G. A. Tolstikhina
TI  - On the factor-web $\overline W(\rho,r,r)$ of the three-web $W(r,r,r)$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 115
EP  - 128
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a11/
LA  - ru
ID  - FPM_2010_16_2_a11
ER  - 
%0 Journal Article
%A G. A. Tolstikhina
%T On the factor-web $\overline W(\rho,r,r)$ of the three-web $W(r,r,r)$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 115-128
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a11/
%G ru
%F FPM_2010_16_2_a11
G. A. Tolstikhina. On the factor-web $\overline W(\rho,r,r)$ of the three-web $W(r,r,r)$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 2, pp. 115-128. http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a11/

[1] Akivis M. A., “O tri-tkanyakh mnogomernykh poverkhnostei”, Itogi nauki i tekhn. Ser. Probl. geom. Tr. geom. sem., 2, 1969, 7–31 | MR | Zbl

[2] Akivis M. A., “Lokalnye differentsiruemye kvazigruppy i tri-tkani mnogomernykh poverkhnostei”, Issledovaniya po teorii kvazigrupp i lup, Shtiintsa, Kishinëv, 1973, 3–12 | MR

[3] Akivis M. A., Goldberg V. V., “O mnogomernykh tri-tkanyakh, obrazovannykh poverkhnostyami raznykh razmernostei”, DAN SSSR, 203:2 (1972), 263–266 | MR | Zbl

[4] Vasileva M. V., Gruppy Li preobrazovanii, Mosk. gos. ped. in-t, M., 1969 | MR

[5] Gorbatsevich V. V., Onischik A. L., “Gruppy Li preobrazovanii”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 20, 1988, 103–240 | MR | Zbl

[6] Kurosh A. G., Lektsii po obschei algebre, Nauka, M., 1973

[7] Tolstikhina G. A., “Algebra i geometriya tri-tkanei, obrazovannykh sloeniyami raznykh razmernostei”, Ser. Sovrem. mat. i eë pril., 32 (2005), 29–116

[8] Tolstikhina G. A., Shelekhov A. M., “Tri-tkani, opredelyaemye gruppami preobrazovanii”, Dokl. RAN, 385:4 (2002), 462–464 | MR | Zbl

[9] Tolstikhina G. A., Shelekhov A. M., Vlozhenie tri-tkani, opredelyaemoi gruppoi preobrazovanii, v gruppovuyu tri-tkan, Dep. v VINITI, No 880–V2003, 2003 | Zbl

[10] Akivis M. A., Shelekhov A. M., Algebra and Geometry of Multidimensional Three-Webs, Kluwer Academic, Dordrecht, 1992 | Zbl