On the factor-web $\overline W(\rho,r,r)$ of the three-web $W(r,r,r)$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 2, pp. 115-128
Voir la notice de l'article provenant de la source Math-Net.Ru
The notion of the factor-web $\overline W(\rho,r,r)$ ($1\leq\rho$) is defined for the three-web $W(r,r,r)$ formed on a $2r$-dimensional differentiable manifold by three $r$-dimensional smooth foliations. Embedding of the factor-web in the initial web $W(r,r,r)$ is constructed. This construction is a well-known geometric analog of the canonical extension of a Lie group of transformations to its parameter group.
@article{FPM_2010_16_2_a11,
author = {G. A. Tolstikhina},
title = {On the factor-web $\overline W(\rho,r,r)$ of the three-web $W(r,r,r)$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {115--128},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a11/}
}
TY - JOUR AU - G. A. Tolstikhina TI - On the factor-web $\overline W(\rho,r,r)$ of the three-web $W(r,r,r)$ JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2010 SP - 115 EP - 128 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a11/ LA - ru ID - FPM_2010_16_2_a11 ER -
G. A. Tolstikhina. On the factor-web $\overline W(\rho,r,r)$ of the three-web $W(r,r,r)$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 2, pp. 115-128. http://geodesic.mathdoc.fr/item/FPM_2010_16_2_a11/