Maximally movable spaces of Finsler type and their generalization
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 109-119
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider some generalization of maximally movable spaces of Finsler type. Among them, there are locally conic spaces (Riemannian metrics of their tangent spaces are realized on circular cones) and generalized Lagrange spaces with Tamm metrics (their tangent Riemannian spaces admit all rotations). On the tangent bundle of a Riemannian manifold, we study a special class of almost product metrics, generated Tamm metric. This class contains Sasaki metric and Cheeger–Gromol metric. We determine the position of this class in the Naveira classification of Riemannian almost product metrics.
@article{FPM_2010_16_1_a8,
author = {V. I. Panzhensky and O. V. Sukhova},
title = {Maximally movable spaces of {Finsler} type and their generalization},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {109--119},
publisher = {mathdoc},
volume = {16},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a8/}
}
TY - JOUR AU - V. I. Panzhensky AU - O. V. Sukhova TI - Maximally movable spaces of Finsler type and their generalization JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2010 SP - 109 EP - 119 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a8/ LA - ru ID - FPM_2010_16_1_a8 ER -
V. I. Panzhensky; O. V. Sukhova. Maximally movable spaces of Finsler type and their generalization. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 109-119. http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a8/