Geometry of dual spaces of affine-metric connection
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 39-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we consider the dual geometry of a normalized space of affine connection $\mathrm A_{n,n}$. In particular, we study the dual spaces of an affine-metric connection $\overset{p}{\mathrm M}_{n,n}$, which are induced by a nondegenerate normalization of a space of affine-metric connection $\mathrm M_{n,n}$.
@article{FPM_2010_16_1_a2,
     author = {T. G. Alenina},
     title = {Geometry of dual spaces of affine-metric connection},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {39--45},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a2/}
}
TY  - JOUR
AU  - T. G. Alenina
TI  - Geometry of dual spaces of affine-metric connection
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 39
EP  - 45
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a2/
LA  - ru
ID  - FPM_2010_16_1_a2
ER  - 
%0 Journal Article
%A T. G. Alenina
%T Geometry of dual spaces of affine-metric connection
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 39-45
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a2/
%G ru
%F FPM_2010_16_1_a2
T. G. Alenina. Geometry of dual spaces of affine-metric connection. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 39-45. http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a2/

[1] Laptev G. F., “O vydelenii odnogo klassa vnutrennikh geometrii, indutsirovannykh na poverkhnosti prostranstva affinnoi svyaznosti”, DAN SSSR, 41:8 (1943), 329–331 | MR

[2] Laptev G. F., “Differentsialnaya geometriya pogruzhënnykh mnogoobrazii”, Tr. MMO, 2, 1953, 275–382 | MR | Zbl

[3] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976 | MR | Zbl

[4] Rashevskii P. K., Rimanova geometriya i tenzornyi analiz, Nauka, M., 1967 | MR

[5] Stolyarov A. V., Dvoistvennaya teoriya osnaschënnykh mnogoobrazii, Cheboksary, 1994 | MR

[6] Stolyarov A. V., “Prostranstvo proektivno-metricheskoi svyaznosti”, Izv. vyssh. uchebn. zaved. Matematika, 2003, no. 11, 70–76 | MR | Zbl

[7] Stolyarov A. V., “Dvoistvennaya geometriya normalizovannogo prostranstva affinnoi svyaznosti”, Vestn. Chuvashsk. gos. ped. un-ta, 2005, no. 4, 21–27

[8] Stolyarov A. V., “Affinno metricheskaya svyaznost”, Vestn. Chuvashsk. gos. ped. un-ta, 2006, no. 5, 158–167