On one class of three-webs with partially symmetric curvature tensor
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 179-188.

Voir la notice de l'article provenant de la source Math-Net.Ru

A classification of six-dimensional webs $H_s$ by type of the associated Lie algebra is carried out. Two approaches to the investigation of geometry of nontrivial class of webs $H_s$ are considered.
@article{FPM_2010_16_1_a14,
     author = {M. A. Shestakova},
     title = {On one class of three-webs with partially symmetric curvature tensor},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {179--188},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a14/}
}
TY  - JOUR
AU  - M. A. Shestakova
TI  - On one class of three-webs with partially symmetric curvature tensor
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 179
EP  - 188
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a14/
LA  - ru
ID  - FPM_2010_16_1_a14
ER  - 
%0 Journal Article
%A M. A. Shestakova
%T On one class of three-webs with partially symmetric curvature tensor
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 179-188
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a14/
%G ru
%F FPM_2010_16_1_a14
M. A. Shestakova. On one class of three-webs with partially symmetric curvature tensor. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 179-188. http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a14/

[1] Akivis M. A., “O tri-tkanyakh mnogomernykh poverkhnostei”, Itogi nauki i tekhn. Ser. Probl. geom. Tr. geom. sem., 2, 1969, 7–31 | MR | Zbl

[2] Botsu V. P., Ob izoklinnosti chetyrëkhmernykh shestiugolnykh tri-tkanei, Dep. v VINITI 14.08.84, No 5824-84, 1984

[3] Egorov I. P., Geometriya, Prosveschenie, M., 1979 | MR | Zbl

[4] Shelekhov A. M., “O differentsialno-geometricheskikh ob'ektakh vysshikh poryadkov mnogomernoi tri-tkani”, Itogi nauki i tekhn. Ser. Probl. geom. Tr. geom. sem., 19, 1987, 101–154 | MR | Zbl

[5] Shestakova M. A., “Strukturnye uravneniya shestimernoi shestiugolnoi tri-tkani”, Tkani i kvazigruppy, KGU, Kalinin, 1988, 140–145 | MR

[6] Shestakova M. A., “Primer shestiugolnoi tri-tkani s chastichno simmetrichnym tenzorom krivizny”, Tkani i kvazigruppy, KGU, Kalinin, 1990, 22–29 | MR

[7] Akivis M. A., Shelekhov A. M., Geometry and Algebra of Multidimensional Three-Webs, Kluwer Academic, Dordrecht, 1992 | MR | Zbl

[8] Chern S. S., “Eine Invariantentheorie der Dreigewebe aus $r$-dimensionalen Mannigfaltigkeiten in $\mathbf R_{2r}$”, Abh. Math. Sem. Univ. Hamburg., 11:1–2 (1936), 333–358 | MR | Zbl

[9] Shestakova M. A., “Characterization of some hexagonal 3-web in terms of associated Lie algebras”, Webs and Quasigroups, 1996–1997, Tver State Univ., Tver, 1997, 133–141 | MR | Zbl

[10] Shestakova M. A., “On geometry of a six-dimensional hexagonal three-web $H^1_s$”, Webs and Quasigroups, Tver State Univ., Tver, 2002, 106–117 | MR | Zbl

[11] Shestakova M. A., “On theory of six-dimensional hexagonal three-webs”, Webs and Quasigroups, Tver State Univ., Tver, 2003, 56–62 | MR