Differential-geometric structures on generalized Reidemeister and Bol three-webs
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 157-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present the main results of the study of multidimensional three-webs $W(p,q,r)$ obtained by the method of external forms and moving Cartan frame. The method was developed by the Russian mathematicians S. P. Finikov, G. F. Laptev, and A. M. Vasiliev, while fundamentals of differential-geometric $(p,q,r)$-webs theory were described by M. A. Akivis and V. V. Goldberg. Investigation of $(p,q,r)$-webs including algebraic and geometric theory aspects has been continued in our papers, in particular, we found the structure equations of a three-web $W(p,q,r)$, where $p=\lambda l$, $q=\lambda m$, and $r=\lambda(l+m-1)$. For such webs, we define the notion of a generalized Reidemeister configuration and proved that a three-web $W(\lambda l,\lambda m,\lambda (l+m-1))$, on which all sufficiently small generalized Reidemeister configurations are closed, are generated by a $\lambda$-dimensional Lie group $G$. The structure equations of the web are connected with the Maurer–Cartan equations of the group $G$. We define generalized Reidemeister and Bol configurations for three-webs $W(p,q,q)$. It is proved that a web $W(p,q,q)$ on which generalized Reidemeister or Bol configurations are closed is generated, respectively, by acting of a local smooth $q$-parametric Lie group or a Bol quasigroup on a smooth $p$-dimensional manifold. For such webs, the structure equations are found and their differential-geometric properties are studies.
@article{FPM_2010_16_1_a12,
     author = {G. A. Tolstikhina},
     title = {Differential-geometric structures on generalized {Reidemeister} and {Bol} three-webs},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {157--169},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a12/}
}
TY  - JOUR
AU  - G. A. Tolstikhina
TI  - Differential-geometric structures on generalized Reidemeister and Bol three-webs
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 157
EP  - 169
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a12/
LA  - ru
ID  - FPM_2010_16_1_a12
ER  - 
%0 Journal Article
%A G. A. Tolstikhina
%T Differential-geometric structures on generalized Reidemeister and Bol three-webs
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 157-169
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a12/
%G ru
%F FPM_2010_16_1_a12
G. A. Tolstikhina. Differential-geometric structures on generalized Reidemeister and Bol three-webs. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 157-169. http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a12/

[1] Akivis M. A., “O tri-tkanyakh mnogomernykh poverkhnostei”, Itogi nauki i tekhn. Ser. Probl. geom. Tr. geom. sem., 2, 1969, 7–31 | MR | Zbl

[2] Akivis M. A., Goldberg V. V., “O mnogomernykh tri-tkanyakh, obrazovannykh poverkhnostyami raznykh razmernostei”, DAN SSSR, 203:2 (1972), 263–266 | MR | Zbl

[3] Goldberg V. V., “O $(n+1)$-tkanyakh mnogomernykh poverkhnostei”, DAN SSSR, 210:4 (1973), 756–759 | MR | Zbl

[4] Goldberg V. V., “Transversalno-geodezicheskie, shestiugolnye i gruppovye tri-tkani, obrazovannye poverkhnostyami raznykh razmernostei”, Sb. statei po differen. geom., Kalinin, 1974, 52–64 | MR

[5] Goldberg V. V., “O privodimykh, gruppovykh i $(2n+2)$-edrichnykh $(n+1)$-tkanyakh mnogomernykh poverkhnostei”, Sib. mat. zhurn., 17:1 (1976), 44–57 | MR

[6] Lykhmus Ya., Paal E., Sorgsepp L., “Neassotsiativnost v matematike i fizike”, Kvazigruppy i neassotsiativnye algebry v fizike, Tr. Instituta fiziki, 66, Tartu, 1990, 8–22 | MR

[7] Mikhailichenko G. G., “Reshenie funktsionalnykh uravnenii v teorii fizicheskikh struktur”, DAN SSSR, 206:5 (1972), 1056–1058 | Zbl

[8] Mikheev P. O., O lupakh preobrazovanii, Dep. v VINITI No 4531-85, 1985

[9] Nesterov A. I., “Kvazigruppovye idei v fizike”, Kvazigruppy i neassotsiativnye algebry v fizike, Tr. Instituta fiziki, 66, Tartu, 1990, 107–120 | MR | Zbl

[10] Tolstikhina G. A., “Algebra i geometriya tri-tkanei, obrazovannykh sloeniyami raznykh razmernostei”, Itogi nauki i tekhn. Ser. Sovrem. mat. i eë pril., 32, 2005, 29–116

[11] Tolstikhina G. A., “K geometrii gladkikh otobrazhenii $R^q\times R^p\to R^\lambda$, obobschayuschikh gruppy”, Vestn. Tverskogo gos. un-ta. Ser. Prikladnaya matematika, 2007, no. 5(39), 19–38

[12] Tolstikhina G. A., “O lokalno simmetricheskoi strukture, svyazannoi s obobschënnoi levoi tri-tkanyu Bola $B_l(p,q,q)$”, Geometriya, topologiya ta ikh zastosuvannya: Zb. prats Inst. mat. NAN Ukraïni, 6:2 (2009), 247–255 | Zbl

[13] Tolstikhina G. A., Shelekhov A. M., O tri-tkanyakh $W(p,q,p+q-1)$, na kotorykh zamykayutsya obobschënnye konfiguratsii Reidemeistera, Dep. v VINITI 13.08.2001, No 1869-V2001

[14] Tolstikhina G. A., Shelekhov A. M., “Obobschënnaya assotsiativnost v gladkikh gruppoidakh”, Dokl. RAN, 383:1 (2002), 32–33 | MR | Zbl

[15] Tolstikhina G. A., Shelekhov A. M., “Tri-tkani, opredelyaemye gruppami preobrazovanii”, Dokl. RAN, 385:4 (2002), 462–464 | MR | Zbl

[16] Tolstikhina G. A., Shelekhov A. M., Vlozhenie tri-tkani, opredelyaemoi gruppoi preobrazovanii, v gruppovuyu tri-tkan, Dep. v VINITI No 880–V2003, 2003 | Zbl

[17] Tolstikhina G. A., Shelekhov A. M., “O kvazigruppakh Bola preobrazovanii”, Dokl. RAN, 401:2 (2005), 166–168 | MR | Zbl

[18] Tolstikhina G. A., Shelekhov A. M., “O tri-tkani Bola, obrazovannoi sloeniyami raznykh razmernostei”, Izv. vyssh. uchebn. zaved. Matematika, 2005, no. 5(516), 56–62 | MR | Zbl

[19] Akivis M. A., Shelekhov A. M., Algebra and Geometry of Multidimensional Three-Webs, Kluwer Academic, Dordrecht, 1992 | Zbl

[20] Batalin I. A., “Quasigroup construction and first class constraints”, J. Math. Phys., 22:9 (1981), 1837–1849 | DOI | MR

[21] Miheev P. O., “Quasigroups of transformations”, Kvazigruppy i neassotsiativnye algebry v fizike, Tr. Instituta fiziki, 66, Tartu, 1990, 54–66 | MR | Zbl

[22] Tolstikhina G. A., “On associative smooth monoids”, Webs and Quasigroups, Tver, 2002, 53–59 | MR | Zbl