Hausdorff metric on faces of the $n$-cube
Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 151-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hausdorff metric on all faces of the unit $n$-cube ($\mathrm I^n$) is considered. The notion of a cubant is used; it was introduced as an $n$-digit quaternary code of a $k$-dimensional face containing the Cartesian product of $k$ frame unit segments and the face translation code within $\mathrm I^n$. The cubants form a semigroup with a unit (monoid) with respect to the given operation of multiplication. A calculation of Hausdorff metric based on the generalization of the Hamming metric for binary codes is considered. The supercomputing issues are discussed.
@article{FPM_2010_16_1_a11,
     author = {G. G. Ryabov},
     title = {Hausdorff metric on faces of the $n$-cube},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {151--155},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a11/}
}
TY  - JOUR
AU  - G. G. Ryabov
TI  - Hausdorff metric on faces of the $n$-cube
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2010
SP  - 151
EP  - 155
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a11/
LA  - ru
ID  - FPM_2010_16_1_a11
ER  - 
%0 Journal Article
%A G. G. Ryabov
%T Hausdorff metric on faces of the $n$-cube
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2010
%P 151-155
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a11/
%G ru
%F FPM_2010_16_1_a11
G. G. Ryabov. Hausdorff metric on faces of the $n$-cube. Fundamentalʹnaâ i prikladnaâ matematika, Tome 16 (2010) no. 1, pp. 151-155. http://geodesic.mathdoc.fr/item/FPM_2010_16_1_a11/

[1] Deza M., Shtogrin M. I., “Mozaiki i ikh izometricheskie vlozheniya”, Izv. RAN. Ser. mat., 66:3 (2002), 3–22 | DOI | MR | Zbl

[2] Ryabov G. G., “O putevom kodirovanii $k$-granei v $n$-mernom kube”, Vychislitelnye metody i programmirovanie, 9:1 (2008), 20–22 | MR

[3] Ryabov G. G., “O chetverichnom kodirovanii kubicheskikh struktur”, Vychislitelnye metody i programmirovanie, 10:2 (2009), 154–161 | MR