On balanced colorings of hypergraphs
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 7, pp. 141-163
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with an extremal problem concerning hypergraph colorings. Let $k$ be an integer. The problem is to find the value $m_k(n)$ equal to the minimum number of edges in an $n$-uniform hypergraph not admitting two-colorings of the vertex set such that every edge of the hypergraph contains $k$ vertices of each color. In this paper, we obtain the exact values of $m_2(5)$ and $m_2(4)$, and the upper bounds for $m_3(7)$ and $m_4(9)$.
@article{FPM_2009_15_7_a6,
author = {A. P. Rozovskaya and M. V. Titova and D. A. Shabanov},
title = {On balanced colorings of hypergraphs},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {141--163},
publisher = {mathdoc},
volume = {15},
number = {7},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a6/}
}
TY - JOUR AU - A. P. Rozovskaya AU - M. V. Titova AU - D. A. Shabanov TI - On balanced colorings of hypergraphs JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2009 SP - 141 EP - 163 VL - 15 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a6/ LA - ru ID - FPM_2009_15_7_a6 ER -
A. P. Rozovskaya; M. V. Titova; D. A. Shabanov. On balanced colorings of hypergraphs. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 7, pp. 141-163. http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a6/