On balanced colorings of hypergraphs
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 7, pp. 141-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with an extremal problem concerning hypergraph colorings. Let $k$ be an integer. The problem is to find the value $m_k(n)$ equal to the minimum number of edges in an $n$-uniform hypergraph not admitting two-colorings of the vertex set such that every edge of the hypergraph contains $k$ vertices of each color. In this paper, we obtain the exact values of $m_2(5)$ and $m_2(4)$, and the upper bounds for $m_3(7)$ and $m_4(9)$.
@article{FPM_2009_15_7_a6,
     author = {A. P. Rozovskaya and M. V. Titova and D. A. Shabanov},
     title = {On balanced colorings of hypergraphs},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {141--163},
     publisher = {mathdoc},
     volume = {15},
     number = {7},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a6/}
}
TY  - JOUR
AU  - A. P. Rozovskaya
AU  - M. V. Titova
AU  - D. A. Shabanov
TI  - On balanced colorings of hypergraphs
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 141
EP  - 163
VL  - 15
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a6/
LA  - ru
ID  - FPM_2009_15_7_a6
ER  - 
%0 Journal Article
%A A. P. Rozovskaya
%A M. V. Titova
%A D. A. Shabanov
%T On balanced colorings of hypergraphs
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 141-163
%V 15
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a6/
%G ru
%F FPM_2009_15_7_a6
A. P. Rozovskaya; M. V. Titova; D. A. Shabanov. On balanced colorings of hypergraphs. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 7, pp. 141-163. http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a6/

[1] Rozovskaya A. P., “O dvukhtsvetnykh raskraskakh obschego vida dlya ravnomernykh gipergrafov”, Dokl. RAN, 429:3 (2009), 309–311 | MR | Zbl

[2] Shabanov D. A., “Ob odnoi kombinatornoi zadache Erdësha”, Dokl. RAN, 396:2 (2004), 166–169 | MR | Zbl

[3] Shabanov D. A., “Ekstremalnye zadachi dlya raskrasok ravnomernykh gipergrafov”, Izv. RAN. Ser. mat., 71:6 (2007), 183–222 | DOI | MR | Zbl

[4] Shabanov D. A., “Randomizirovannye algoritmy raskrasok gipergrafov”, Mat. sb., 199:7 (2008), 139–160 | DOI | MR

[5] Abbott H. L., Hare D. R., “Families of 4-sets without property $B$”, Ars Combinatoria, 60 (2001), 239–245 | MR | Zbl

[6] Abbott H. L., Liu A., “On property $B$ of families of sets”, Can. Math. Bull., 23 (1980), 429–435 | DOI | MR | Zbl

[7] Beck J., “On 3-chromatic hypergraphs”, Discrete Math., 24 (1978), 127–137 | DOI | MR | Zbl

[8] Erdős P., “On a combinatorial problem. I”, Nordisk Mat. Tidskr., 11 (1963), 5–10 | MR | Zbl

[9] Erdős P., “On a combinatorial problem. II”, Acta Math. Acad. Sci. Hungar., 15 (1964), 445–447 | DOI | MR | Zbl

[10] Erdős P., Hajnal A., “On a property of families of sets”, Acta Math. Acad. Sci. Hungar., 12 (1961), 87–123 | DOI | MR | Zbl

[11] Exoo G., “On constructing hypergraphs without property $B$”, Ars Combinatoria, 30 (1990), 3–12 | MR | Zbl

[12] Goldberg M., Russell H., “Toward computing $m(4)$”, Ars Combinatoria, 39 (1995), 139–148 | MR | Zbl

[13] Manning G. M., “Some results on the $m(4)$ problem of Erdős and Hajnal”, Electron. Res. Announc. Amer. Math. Soc., 1995, no. 1, 112–113 | DOI | MR | Zbl

[14] Radhakrishnan J., Srinivasan A., “Improved bounds and algorithms for hypergraph two-coloring”, Random Structures Algorithms, 16 (2000), 4–32 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[15] Seymour P. D., “A note on combinatorial problem of Erdős and Hajnal”, J. London Math. Soc., 8 (1974), 681–682 | DOI | MR | Zbl

[16] Toft B., “On color critical hypergraphs”, Infinite and Finite Sets, ed. A. Hajnal, North-Holland, Amsterdam, 1975, 1445–1457 | MR