On balanced colorings of hypergraphs
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 7, pp. 141-163

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with an extremal problem concerning hypergraph colorings. Let $k$ be an integer. The problem is to find the value $m_k(n)$ equal to the minimum number of edges in an $n$-uniform hypergraph not admitting two-colorings of the vertex set such that every edge of the hypergraph contains $k$ vertices of each color. In this paper, we obtain the exact values of $m_2(5)$ and $m_2(4)$, and the upper bounds for $m_3(7)$ and $m_4(9)$.
@article{FPM_2009_15_7_a6,
     author = {A. P. Rozovskaya and M. V. Titova and D. A. Shabanov},
     title = {On balanced colorings of hypergraphs},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {141--163},
     publisher = {mathdoc},
     volume = {15},
     number = {7},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a6/}
}
TY  - JOUR
AU  - A. P. Rozovskaya
AU  - M. V. Titova
AU  - D. A. Shabanov
TI  - On balanced colorings of hypergraphs
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 141
EP  - 163
VL  - 15
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a6/
LA  - ru
ID  - FPM_2009_15_7_a6
ER  - 
%0 Journal Article
%A A. P. Rozovskaya
%A M. V. Titova
%A D. A. Shabanov
%T On balanced colorings of hypergraphs
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 141-163
%V 15
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a6/
%G ru
%F FPM_2009_15_7_a6
A. P. Rozovskaya; M. V. Titova; D. A. Shabanov. On balanced colorings of hypergraphs. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 7, pp. 141-163. http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a6/