On homogeneous extensions of finite predicate systems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 7, pp. 137-140
It is shown that any finite $n$-element predicate system for which any two one-element subsystems are isomorphic is embeddable in a finite $(2^n-1)$-element system having a transitive automorphism group.
@article{FPM_2009_15_7_a5,
author = {E. V. Ovchinnikova},
title = {On homogeneous extensions of finite predicate systems},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {137--140},
year = {2009},
volume = {15},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a5/}
}
E. V. Ovchinnikova. On homogeneous extensions of finite predicate systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 7, pp. 137-140. http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a5/
[1] Ovchinnikova E. V., “O rasshireniyakh chastichnykh izomorfizmov konechnykh poligonov nad lineino uporyadochennymi monoidami”, Algebra i teoriya modelei, 6, Izd-vo NGTU, Novosibirsk, 2007, 45–48
[2] Herwig B., “Extending partial automorphisms on finite structures”, Combinatorica, 15 (1995), 365–371 | DOI | MR | Zbl
[3] Hrushovski E., “Extending partial isomorphisms of graphs”, Combinatorica, 12 (1992), 204–218 | DOI | MR