On one class of modules that are close to Noetherian
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 7, pp. 113-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an $\mathbf RG$-module $A$ over a commutative Noetherian ring $\mathbf R$. Let $G$ be a group having infinite section $p$-rank (or infinite 0-rank) such that $C_G(A)=1$, $A/C_A(G)$ is not a Noetherian $\mathbf R$-module, but the quotient $A/C_A(H)$ is a Noetherian $\mathbf R$-module for every proper subgroup $H$ of infinite section $p$-rank (or infinite 0-rank, respectively). In this paper, it is proved that if $G$ is a locally soluble group, then $G$ is soluble. Some properties of soluble groups of this type are also obtained.
@article{FPM_2009_15_7_a3,
     author = {O. Yu. Dashkova},
     title = {On one class of modules that are close to {Noetherian}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {113--125},
     publisher = {mathdoc},
     volume = {15},
     number = {7},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a3/}
}
TY  - JOUR
AU  - O. Yu. Dashkova
TI  - On one class of modules that are close to Noetherian
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 113
EP  - 125
VL  - 15
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a3/
LA  - ru
ID  - FPM_2009_15_7_a3
ER  - 
%0 Journal Article
%A O. Yu. Dashkova
%T On one class of modules that are close to Noetherian
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 113-125
%V 15
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a3/
%G ru
%F FPM_2009_15_7_a3
O. Yu. Dashkova. On one class of modules that are close to Noetherian. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 7, pp. 113-125. http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a3/

[1] Maltsev A. I., “O gruppakh konechnogo ranga”, Mat. sb., 22(64):2 (1948), 351–352 | MR | Zbl

[2] Baer R., Heineken H., “Radical groups of finite Abelian subgroup rank”, Illinois J. Math., 16 (1972), 533–580 | MR | Zbl

[3] Dashkova O. Yu., Dixon M. R., Kurdachenko L. A., “Linear groups with rank restrictions on the subgroups of infinite central dimension”, J. Pure Appl. Algebra, 208 (2007), 785–795 | DOI | MR | Zbl

[4] Franciosi S., De Giovanni F., Kurdachenko L. A., “The Schur property and groups with uniform conjugacy classes”, J. Algebra, 174 (1995), 823–847 | DOI | MR | Zbl

[5] Kegel O. H., Wehrfritz B. A. F., Locally Finite Groups, Math. Library, North-Holland, Amsterdam, 1973 | MR | Zbl

[6] Robinson D J. R., Finiteness Conditions and Generalized Soluble Groups, Ergebnisse Math. ihrer Grenzgebiete, Springer, Berlin, 1972

[7] Wehrfritz B. A. F., Infinite Linear Groups, Ergebnisse Math. ihrer Grenzgebiete, Springer, Berlin, 1973 | MR | Zbl