Radicals and $l$-modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 7, pp. 235-243.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that for any special class of $l$-modules, we can define a special class of $l$-rings. We prove that the special radical of an $l$-ring $R$ can be represented as the intersection of the $l$-annihilators of $l$-modules over $R$ belonging to the special class. The prime radical of an $l$-ring $R$ can be represented as the intersection of the $l$-annihilators of $l$-prime $l$-modules over $R$.
@article{FPM_2009_15_7_a12,
     author = {N. E. Shavgulidze},
     title = {Radicals and $l$-modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {235--243},
     publisher = {mathdoc},
     volume = {15},
     number = {7},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a12/}
}
TY  - JOUR
AU  - N. E. Shavgulidze
TI  - Radicals and $l$-modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 235
EP  - 243
VL  - 15
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a12/
LA  - ru
ID  - FPM_2009_15_7_a12
ER  - 
%0 Journal Article
%A N. E. Shavgulidze
%T Radicals and $l$-modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 235-243
%V 15
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a12/
%G ru
%F FPM_2009_15_7_a12
N. E. Shavgulidze. Radicals and $l$-modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 7, pp. 235-243. http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a12/

[1] Andrunakievich V. A., Ryabukhin Yu. M., “Spetsialnye moduli i spetsialnye radikaly”, DAN SSSR, 147 (1962), 1274–1277 | Zbl

[2] Birkgof G., Teoriya reshëtok, Mir, M., 1984 | MR

[3] Mikhalëv A. V., Shatalova M. A., “Pervichnyi radikal reshëtochno uporyadochennykh kolets”, Sb. rabot po algebre, Izd-vo Mosk. un-ta, M., 1989, 178–184

[4] Fuks L., Uporyadochennye algebraicheskie sistemy, Nauka, M., 1965 | Zbl

[5] Shavgulidze N. E., “Radikaly $l$-kolets i odnostoronnie $l$-idealy”, Fundament. i prikl. mat., 14:8 (2008), 169–181 | MR

[6] Shavgulidze N. E., “Spetsialnye klassy $l$-kolets”, Fundament. i prikl. mat., 15:1 (2009), 157–173

[7] Shavgulidze N. E., “Spetsialnye klassy $l$-kolets i lemma Andersona–Divinskogo–Sulinskogo”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 2010, no. 2, 42–44 | MR

[8] Shavgulidze N. E., “Radikaly $l$-kolets i spetsialnye klassy $l$-modulei”, Uspekhi mat. nauk (to appear)

[9] Shatalova M. A., “$l_A$- i $l_I$-koltsa”, Sib. mat. zhurn., 7:6 (1966), 1383–1389

[10] Shatalova M. A., “K teorii radikalov v strukturno uporyadochennykh koltsakh”, Mat. zametki, 4:6 (1968), 639–648 | MR | Zbl