A~cohomological characteristic for the length and width of a~partially ordered set
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 7, pp. 217-227.

Voir la notice de l'article provenant de la source Math-Net.Ru

Grothendieck topologies on a poset preset by one set and corresponding sheaf cohomologies are analyzed. The relation between the given cohomologies and the length of a poset is identified. For this purpose, Grothendieck topologies are defined on the set of the chains and antichains of the given poset; the corresponding theories of sheaf cohomologies are formed and with the help of those the poset is analyzed.
@article{FPM_2009_15_7_a10,
     author = {A. G. Sukhonos},
     title = {A~cohomological characteristic for the length and width of a~partially ordered set},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {217--227},
     publisher = {mathdoc},
     volume = {15},
     number = {7},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a10/}
}
TY  - JOUR
AU  - A. G. Sukhonos
TI  - A~cohomological characteristic for the length and width of a~partially ordered set
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 217
EP  - 227
VL  - 15
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a10/
LA  - ru
ID  - FPM_2009_15_7_a10
ER  - 
%0 Journal Article
%A A. G. Sukhonos
%T A~cohomological characteristic for the length and width of a~partially ordered set
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 217-227
%V 15
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a10/
%G ru
%F FPM_2009_15_7_a10
A. G. Sukhonos. A~cohomological characteristic for the length and width of a~partially ordered set. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 7, pp. 217-227. http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a10/

[2] Skurikhin E. E., “Puchkovye kogomologii i razmernost chastichno uporyadochennykh mnozhestv”, Tr. MMO, 239, 2002, 289–317 | MR | Zbl

[3] Skurikhin E. E., Puchkovye kogomologii i razmernost chastichno uporyadochennykh mnozhestv., Dalnauka, Vladivostok, 2004

[4] Skurikhin E. E., Kogomologii i razmernosti topologicheskikh i ravnomernykh prostranstv, Dalnauka, Vladivostok, 2008

[5] Skurikhin E. E., Sukhonos A. G., “Topologiya Grotendika na prostranstvakh Chu”, Mat. tr., 11:2 (2008), 159–186 | MR | Zbl

[6] Artin M., Grothendieck Topologies, Amer. Math. Soc., 1962