A~cohomological characteristic for the length and width of a~partially ordered set
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 7, pp. 217-227
Voir la notice de l'article provenant de la source Math-Net.Ru
Grothendieck topologies on a poset preset by one set and corresponding sheaf cohomologies are analyzed. The relation between the given cohomologies and the length of a poset is identified. For this purpose, Grothendieck topologies are defined on the set of the chains and antichains of the given poset; the corresponding theories of sheaf cohomologies are formed and with the help of those the poset is analyzed.
@article{FPM_2009_15_7_a10,
author = {A. G. Sukhonos},
title = {A~cohomological characteristic for the length and width of a~partially ordered set},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {217--227},
publisher = {mathdoc},
volume = {15},
number = {7},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a10/}
}
TY - JOUR AU - A. G. Sukhonos TI - A~cohomological characteristic for the length and width of a~partially ordered set JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2009 SP - 217 EP - 227 VL - 15 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a10/ LA - ru ID - FPM_2009_15_7_a10 ER -
A. G. Sukhonos. A~cohomological characteristic for the length and width of a~partially ordered set. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 7, pp. 217-227. http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a10/