A cohomological characteristic for the length and width of a partially ordered set
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 7, pp. 217-227
Grothendieck topologies on a poset preset by one set and corresponding sheaf cohomologies are analyzed. The relation between the given cohomologies and the length of a poset is identified. For this purpose, Grothendieck topologies are defined on the set of the chains and antichains of the given poset; the corresponding theories of sheaf cohomologies are formed and with the help of those the poset is analyzed.
@article{FPM_2009_15_7_a10,
author = {A. G. Sukhonos},
title = {A~cohomological characteristic for the length and width of a~partially ordered set},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {217--227},
year = {2009},
volume = {15},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a10/}
}
A. G. Sukhonos. A cohomological characteristic for the length and width of a partially ordered set. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 7, pp. 217-227. http://geodesic.mathdoc.fr/item/FPM_2009_15_7_a10/
[2] Skurikhin E. E., “Puchkovye kogomologii i razmernost chastichno uporyadochennykh mnozhestv”, Tr. MMO, 239, 2002, 289–317 | MR | Zbl
[3] Skurikhin E. E., Puchkovye kogomologii i razmernost chastichno uporyadochennykh mnozhestv., Dalnauka, Vladivostok, 2004
[4] Skurikhin E. E., Kogomologii i razmernosti topologicheskikh i ravnomernykh prostranstv, Dalnauka, Vladivostok, 2008
[5] Skurikhin E. E., Sukhonos A. G., “Topologiya Grotendika na prostranstvakh Chu”, Mat. tr., 11:2 (2008), 159–186 | MR | Zbl
[6] Artin M., Grothendieck Topologies, Amer. Math. Soc., 1962