A~new numerical method for the solution of the Boltzmann equation in the semiconductor nonlinear electron transport problem
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 6, pp. 77-97

Voir la notice de l'article provenant de la source Math-Net.Ru

A new iterative method for solving the Boltzmann transport equation in the space-uniform case is introduced. The method is based on the use of a mesh in the momentum space to represent the distribution function. In intermediate points the function is found with the help of interpolation. The method is used to study the hot-electron transport in bulk $n$-In N, which is a promising material for optoelectronic applications.
@article{FPM_2009_15_6_a6,
     author = {N. A. Masyukov and A. V. Dmitriev},
     title = {A~new numerical method for the solution of the {Boltzmann} equation in the semiconductor nonlinear electron transport problem},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {77--97},
     publisher = {mathdoc},
     volume = {15},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a6/}
}
TY  - JOUR
AU  - N. A. Masyukov
AU  - A. V. Dmitriev
TI  - A~new numerical method for the solution of the Boltzmann equation in the semiconductor nonlinear electron transport problem
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 77
EP  - 97
VL  - 15
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a6/
LA  - ru
ID  - FPM_2009_15_6_a6
ER  - 
%0 Journal Article
%A N. A. Masyukov
%A A. V. Dmitriev
%T A~new numerical method for the solution of the Boltzmann equation in the semiconductor nonlinear electron transport problem
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 77-97
%V 15
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a6/
%G ru
%F FPM_2009_15_6_a6
N. A. Masyukov; A. V. Dmitriev. A~new numerical method for the solution of the Boltzmann equation in the semiconductor nonlinear electron transport problem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 6, pp. 77-97. http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a6/