On the inequality of partial temperatures of a~homogeneous gas mixture in thermodynamical equilibrium state
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 6, pp. 63-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

A modified definition of the state of thermodynamical equilibrium of a homogeneous multicomponent gas mixture is given. It is based on the discrete character of collisions but not on the smoothed by multiple collisions dynamical structure with the physical determination of the kinetic time $dt$. Application of rigorous mathematical methods which adequately describe the discrete character of collisions leads to a qualitatively new structure of the distribution functions and unexpected physical consequences. It is shown that owing to the inequality of head-on and head-tail collisions of particles, partial temperatures of a homogeneous multicomponent gas mixture in thermodynamical equilibrium cannot be equal to each other. It is found that relations of the partial temperatures to the mixture temperature are dependent on the molecular weights and concentrations of the gas components.
@article{FPM_2009_15_6_a5,
     author = {Yu. M. Loskutov},
     title = {On the inequality of partial temperatures of a~homogeneous gas mixture in thermodynamical equilibrium state},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {63--75},
     publisher = {mathdoc},
     volume = {15},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a5/}
}
TY  - JOUR
AU  - Yu. M. Loskutov
TI  - On the inequality of partial temperatures of a~homogeneous gas mixture in thermodynamical equilibrium state
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 63
EP  - 75
VL  - 15
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a5/
LA  - ru
ID  - FPM_2009_15_6_a5
ER  - 
%0 Journal Article
%A Yu. M. Loskutov
%T On the inequality of partial temperatures of a~homogeneous gas mixture in thermodynamical equilibrium state
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 63-75
%V 15
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a5/
%G ru
%F FPM_2009_15_6_a5
Yu. M. Loskutov. On the inequality of partial temperatures of a~homogeneous gas mixture in thermodynamical equilibrium state. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 6, pp. 63-75. http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a5/

[1] Balesku R., Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, v. 1, 2, M., 1978

[2] Bogolyubov N. N., Problemy dinamicheskoi teorii v statisticheskoi fizike, Nauka, M., 1946 | MR

[3] Boltsman L., Lektsii po teorii gazov, M., 1956

[4] Kvasnikov I. A., Termodinamika i statisticheskaya fizika. Teoriya neravnovesnykh sistem, Izd-vo Mosk. un-ta, M., 1987 | MR

[5] Klimontovich Yu. L., Statisticheskaya fizika, Nauka, M., 1982

[6] Kuni F. M., Statisticheskaya fizika i termodinamika, Nauka, M., 1981

[7] Landau L. D., Lifshits E. M., Statisticheskaya fizika, Ch. 1, Nauka, M., 1976 | MR

[8] Leontovich M. A., Vvedenie v termodinamiku. Statisticheskaya fizika, Nauka, M., 1983

[9] Leontovich M. A., Statisticheskaya fizika, Nauka, M., 1944

[10] Lifshits E. M., Pitaevskii L. P., Statisticheskaya fizika, Ch. 2, Nauka, M., 1978 | MR

[11] Loskutov Yu. M., “Ravny li temperatury komponent odnorodnoi smesi dvukh gazov v sostoyanii termodinamicheskogo ravnovesiya?”, Vestn. Mosk. un-ta. Ser. 3. Fizika. Astronomiya, 32:3 (1991), 3–8 | MR

[12] Silin V. P., Vvedenie v kineticheskuyu teoriyu gazov, Nauka, M., 1971

[13] Ulenbek Dzh., Ford Dzh., Lektsii po statisticheskoi mekhanike, M., 1965

[14] Feinman R., Leiton R., Sends M., Feinmanskie lektsii po fizike, v. 4, Mir, M., 1965