Finslerian 3-spinors and the generalized Duffin--Kemmer equation
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 6, pp. 201-210.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main facts of the geometry of Finslerian 3-spinors are formulated. The close connection between Finslerian 3-spinors and vectors of the 9-dimensional linear Finslerian space is established. The isometry group of this space is described. The procedure of dimensional reduction to 4-dimensional quantities is formulated. The generalized Duffin–Kemmer equation for a Finslerian 3-spinor wave function of a free particle in the momentum representation is obtained. From the viewpoint of a 4-dimensional observer, this 9-dimensional equation splits into the standard Dirac and Klein–Gordon equations.
@article{FPM_2009_15_6_a12,
     author = {A. V. Solov'yov},
     title = {Finslerian 3-spinors and the generalized {Duffin--Kemmer} equation},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {201--210},
     publisher = {mathdoc},
     volume = {15},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a12/}
}
TY  - JOUR
AU  - A. V. Solov'yov
TI  - Finslerian 3-spinors and the generalized Duffin--Kemmer equation
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 201
EP  - 210
VL  - 15
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a12/
LA  - ru
ID  - FPM_2009_15_6_a12
ER  - 
%0 Journal Article
%A A. V. Solov'yov
%T Finslerian 3-spinors and the generalized Duffin--Kemmer equation
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 201-210
%V 15
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a12/
%G ru
%F FPM_2009_15_6_a12
A. V. Solov'yov. Finslerian 3-spinors and the generalized Duffin--Kemmer equation. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 6, pp. 201-210. http://geodesic.mathdoc.fr/item/FPM_2009_15_6_a12/

[1] Vladimirov Yu. S., Solovëv A. V., “Fizicheskaya struktura ranga $(4,4;\text b)$ i trëkhkomponentnye spinory”, Vychislitelnye sistemy, 135, 1990, 44–66 | MR | Zbl

[2] Vladimirov Yu. S., Solovev A. V., “Obobschënnye uravneniya Diraka dlya svobodnykh chastits v binarnoi geometrofizike: 2. Struktura ranga $(4,4;\text b)$”, Izv. vyssh. uchebn. zaved. Fizika, 35:6 (1992), 56–59 | MR

[3] Kostrikin A. I., Vvedenie v algebru. Osnovy algebry, Fizmatlit, M., 1994 | MR | Zbl

[4] Postnikov M. M., Lektsii po geometrii. Semestr II. Lineinaya algebra, Nauka, M., 1986 | MR | Zbl

[5] Solovëv A. V., “K teorii binarnykh fizicheskikh struktur ranga $(5,5;\text b)$ i vyshe”, Vychislitelnye sistemy, 135, 1990, 67–77

[6] Duffin R. J., “On the characteristic matrices of covariant systems”, Phys. Rev., 54 (1938), 1114 | DOI | Zbl

[7] Finkelstein D., “Hyperspin and hyperspace”, Phys. Rev. Lett., 56 (1986), 1532–1533 | DOI | MR | Zbl

[8] Finkelstein D., Finkelstein S. R., Holm C., “Hyperspin manifolds”, Internat. J. Theoret. Phys., 25 (1986), 441–463 | DOI | MR | Zbl

[9] Kemmer N., “The particle aspect of meson theory”, Proc. Roy. Soc. London Ser. A, 173 (1939), 91–116 | DOI | MR

[10] Solov'yov A. V., “On $\mathrm{SL}(3,\mathbb C)$-covariant spinor equation and generalized Duffin–Kemmer algebra”, Gravitation Cosmology, 1:3 (1995), 255–257

[11] Solov'yov A. V., Vladimirov Yu. S., “Finslerian $N$-spinors: Algebra”, Internat. J. Theoret. Phys., 40 (2001), 1511–1523 | DOI | MR