On functional specification of Latin squares
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 4, pp. 177-187.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies functional methods for specification of Latin squares over the sets of $n$-dimensional Boolean vectors, $n$-dimensional vectors over an arbitrary finite prime field and over an arbitrary finite Abelian group. In conclusion, a method for constructing classes of nongroup Latin squares is presented.
@article{FPM_2009_15_4_a5,
     author = {V. A. Nosov and A. E. Pankratiev},
     title = {On functional specification of {Latin} squares},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {177--187},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_4_a5/}
}
TY  - JOUR
AU  - V. A. Nosov
AU  - A. E. Pankratiev
TI  - On functional specification of Latin squares
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 177
EP  - 187
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_4_a5/
LA  - ru
ID  - FPM_2009_15_4_a5
ER  - 
%0 Journal Article
%A V. A. Nosov
%A A. E. Pankratiev
%T On functional specification of Latin squares
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 177-187
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_4_a5/
%G ru
%F FPM_2009_15_4_a5
V. A. Nosov; A. E. Pankratiev. On functional specification of Latin squares. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 4, pp. 177-187. http://geodesic.mathdoc.fr/item/FPM_2009_15_4_a5/

[1] Budagyan L. E., “Postroenie negruppovykh latinskikh kvadratov proizvolno bolshikh poryadkov”, Matematika i bezopasnost informatsionnykh tekhnologii, Materialy konferentsii (MGU, 23–24 oktyabrya 2003 g.), MTsNMO, M., 2004, 410–412

[2] Kloss B. M., Malyshev V. A., “Opredelenie regulyarnosti avtomata po ego kanonicheskim uravneniyam”, DAN SSSR, 172:3 (1967), 543–546 | MR | Zbl

[3] Lidl R., Niderraiter G., Konechnye polya, Mir, M., 1988 | Zbl

[4] Nosov V. A., “Kriterii regulyarnosti bulevskogo neavtonomnogo avtomata s razdelënnym vkhodom”, Intellekt. sist., 3:3–4 (1998), 269–280

[5] Nosov V. A., “O postroenii klassov latinskikh kvadratov v bulevoi baze dannykh”, Intellekt. sist., 4:3–4 (1999), 307–320

[6] Nosov V. A., “Postroenie parametricheskogo semeistva latinskikh kvadratov v vektornoi baze dannykh”, Intellekt. sist., 8:1–4 (2004), 517–528

[7] Nosov V. A., Pankratev A. E., “Latinskie kvadraty nad abelevymi gruppami”, Fundament. i prikl. mat., 12:3 (2006), 65–71 | MR

[8] Primenko E. A., Skvortsov E. F., “Ob usloviyakh regulyarnosti konechnykh avtonomnykh avtomatov”, Diskret. mat., 2:1 (1990), 26–30 | MR | Zbl

[9] Shennon K., “Teoriya svyazi v sekretnykh sistemakh”: Shennon K., Raboty po teorii informatsii i kibernetike, M., 1963, 333–369

[10] Denes J., Keedwell A. D., Latin Squares and Their Applications, Akadémiai Kiadó, Budapest, 1974 | MR | Zbl