Cardinality of the set of all precomplete classes for definite automata
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 4, pp. 29-36

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that the cardinality of the set of all precomplete classes for definite automata is continuum.
@article{FPM_2009_15_4_a1,
     author = {D. N. Zhuk},
     title = {Cardinality of the set of all precomplete classes for definite automata},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {29--36},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_4_a1/}
}
TY  - JOUR
AU  - D. N. Zhuk
TI  - Cardinality of the set of all precomplete classes for definite automata
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 29
EP  - 36
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_4_a1/
LA  - ru
ID  - FPM_2009_15_4_a1
ER  - 
%0 Journal Article
%A D. N. Zhuk
%T Cardinality of the set of all precomplete classes for definite automata
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 29-36
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_4_a1/
%G ru
%F FPM_2009_15_4_a1
D. N. Zhuk. Cardinality of the set of all precomplete classes for definite automata. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 4, pp. 29-36. http://geodesic.mathdoc.fr/item/FPM_2009_15_4_a1/