Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2009_15_2_a9, author = {A. A. Tuganbaev}, title = {A~remark on the intersection of powers of the {Jacobson} radical}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {207--209}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a9/} }
A. A. Tuganbaev. A~remark on the intersection of powers of the Jacobson radical. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 2, pp. 207-209. http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a9/
[1] Tuganbaev A. A., “Poludistributivnye i distributivno razlozhimye koltsa”, Mat. zametki, 65:2 (1999), 307–313 | DOI | MR | Zbl
[2] Cauchon G., “Les $t$-anneaux, la condition (H) de Gabriel et ses consequences”, Commun. Algebra, 4:1 (1976), 11–50 | DOI | MR | Zbl
[3] Herstein I. N., “A counter-example in Noetherian rings”, Proc. Nat. Acad. Sci. USA, 54 (1965), 1036–1037 | DOI | MR | Zbl
[4] Herstein I. N., Small L. W., “The intersection of the powers of the radical in Noetherian P.I. rings”, Israel J. Math., 16:2 (1972), 176–180 | DOI | MR
[5] Jategaonkar A. V., “Left principal ideal domains”, J. Algebra, 8 (1968), 148–155 | DOI | MR | Zbl
[6] Jategaonkar A. V., “A counter-example in ring theory and homological algebra”, J. Algebra, 12 (1969), 418–440 | DOI | MR | Zbl
[7] Jategaonkar A. V., “Jacobson's conjecture and modules over fully bounded Noetherian rings”, J. Algebra, 30 (1974), 103–121 | DOI | MR | Zbl
[8] Krause H., “On the nilpotency of the Jacobson radical for Noetherian rings”, Arch. Math., 70:6 (1998), 435–437 | DOI | MR | Zbl
[9] Krause H., Lenagan T. H., “Transfinite powers of the Jacobson radical”, Commun. Algebra, 7:1 (1979), 1–8 | DOI | MR | Zbl
[10] Larsen M. D., Mirbagheri A., “A note on the intersection of the powers of the Jacobson radical”, Rocky Mountain J. Math., 1:4 (1971), 1036–1037 | DOI | MR
[11] Tuganbaev A. A., Semidistributive Rings and Modules, Kluwer Academic, Dordrecht, 1998 | MR | Zbl