Interpretation of graphs in noncommutative theories of Frechet-powers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 2, pp. 145-167.

Voir la notice de l'article provenant de la source Math-Net.Ru

The basic result of the work is the theorem that if an axiomatizable class $K$ of structures is closed under reduced powers by the Frechet filter and it has a stable noncommutative theory, then the class of all graphs is interpretable in the class $K$.
@article{FPM_2009_15_2_a6,
     author = {E. A. Palyutin},
     title = {Interpretation of graphs in noncommutative theories of {Frechet-powers}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {145--167},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a6/}
}
TY  - JOUR
AU  - E. A. Palyutin
TI  - Interpretation of graphs in noncommutative theories of Frechet-powers
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 145
EP  - 167
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a6/
LA  - ru
ID  - FPM_2009_15_2_a6
ER  - 
%0 Journal Article
%A E. A. Palyutin
%T Interpretation of graphs in noncommutative theories of Frechet-powers
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 145-167
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a6/
%G ru
%F FPM_2009_15_2_a6
E. A. Palyutin. Interpretation of graphs in noncommutative theories of Frechet-powers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 2, pp. 145-167. http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a6/

[1] Zaffe Yu., Palyutin E. A., Starchenko S. S., “Modeli superstabilnykh khornovykh teorii”, Algebra i logika, 24:3 (1985), 278–326 | MR

[2] Palyutin E. A., “Kategorichnye khornovy klassy. 1”, Algebra i logika, 19:5 (1980), 582–614 | MR | Zbl

[3] Palyutin E. A., “Normalnost khornovykh teorii s nemaksimalnym spektrom”, Algebra i logika, 24:5 (1985), 551–587 | MR | Zbl

[4] Palyutin E. A., “Eliminatsiya kvantorov dlya kommutativnykh teorii”, Dokl. RAN, 363:3 (1998), 301–303 | MR | Zbl

[5] Palyutin E. A., “Primitivno svyaznye teorii”, Algebra i logika, 39:2 (2000), 145–169 | MR | Zbl

[6] Palyutin E. A., “Stabilnye teorii Freshe-stepenei”, Sib. elektron. mat. izv., 5 (2008), 699–607 | MR

[7] Palyutin E. A., Starchenko S. S., “Spektry khornovykh klassov”, Dokl. RAN, 290:6 (1986), 1298–1300 | MR | Zbl

[8] Palyutin E. A., Starchenko S. S., “Khornovy teorii s nemaksimalnym spektrom”, Tr. In-ta mat. SO AN SSSR, 8, 1988, 108–162 | MR | Zbl

[9] Palyutin E. A., “Quasivarieties with nonmaximum spectrum”, Abstracts of 6th Int. Congress of Log. Method. Phil. Sci., Moscow, 1987, 121–122

[10] Palyutin E. A., “Additive theories”, Logic Colloquium' 98, Proc. of the Annual European Summer Meeting of the Association for Symbolic Logic (Prague, Czech Republic, August 9–15, 1998), Lect. Notes Logic, 13, eds. S. Buss, P. Hajek, P. Pudlak, A. K. Peters, Natick, 2000, 352–356 | MR | Zbl

[11] Palyutin E. A., Starchenko S. S., “Horn theories with non-maximal spectrum”, Amer. Math. Soc. Transl. (2), 195 (1999), 225–284 | MR

[12] Pillay A., “Countable models of stable theories”, Proc. Amer. Math. Soc., 89:4 (1983), 666–672 | DOI | MR | Zbl

[13] Shelah S., Classification Theory and the Number of Non-Isomorphic Models, North-Holland, Amsterdam, 1990 | MR | Zbl

[14] Ziegler M., “Model theory of modules”, Ann. Pure Appl. Logic, 26 (1984), 149–213 | DOI | MR | Zbl