Interpretation of graphs in noncommutative theories of Frechet-powers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 2, pp. 145-167
Voir la notice de l'article provenant de la source Math-Net.Ru
The basic result of the work is the theorem that if an axiomatizable class $K$ of structures is closed under reduced powers by the Frechet filter and it has a stable noncommutative theory, then the class of all graphs is interpretable in the class $K$.
@article{FPM_2009_15_2_a6,
author = {E. A. Palyutin},
title = {Interpretation of graphs in noncommutative theories of {Frechet-powers}},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {145--167},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a6/}
}
E. A. Palyutin. Interpretation of graphs in noncommutative theories of Frechet-powers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 2, pp. 145-167. http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a6/