Automorphisms of Chevalley groups of types $A_l$, $D_l$, or $E_l$ over local rings with~1/2
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 2, pp. 35-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that every automorphism of an (elementary) Chevalley group of type $A_l$, $D_l$, or $E_l$, $l\geq2$, over a commutative local ring with 1/2 is standard, i.e., is the composition of inner, ring, graph, and central automorphisms.
@article{FPM_2009_15_2_a2,
     author = {E. I. Bunina},
     title = {Automorphisms of {Chevalley} groups of types $A_l$, $D_l$, or $E_l$ over local rings with~1/2},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {35--59},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a2/}
}
TY  - JOUR
AU  - E. I. Bunina
TI  - Automorphisms of Chevalley groups of types $A_l$, $D_l$, or $E_l$ over local rings with~1/2
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 35
EP  - 59
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a2/
LA  - ru
ID  - FPM_2009_15_2_a2
ER  - 
%0 Journal Article
%A E. I. Bunina
%T Automorphisms of Chevalley groups of types $A_l$, $D_l$, or $E_l$ over local rings with~1/2
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 35-59
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a2/
%G ru
%F FPM_2009_15_2_a2
E. I. Bunina. Automorphisms of Chevalley groups of types $A_l$, $D_l$, or $E_l$ over local rings with~1/2. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 2, pp. 35-59. http://geodesic.mathdoc.fr/item/FPM_2009_15_2_a2/

[1] Abe E., “Avtomorfizmy grupp Shevalle nad kommutativnymi koltsami”, Algebra i analiz, 5:2 (1993), 74–90 | MR | Zbl

[2] Borel A., “Svoistva i lineinye predstavleniya grupp Shevalle”, Seminar po algebraicheskim gruppam, M., 1973, 9–59 | MR

[3] Bunina E. I., “Avtomorfizmy grupp Shevalle nekotorykh tipov nad lokalnymi koltsami”, Uspekhi mat. nauk, 62:5 (2007), 143–144 | DOI | MR | Zbl

[4] Bunina E. I., “Avtomorfizmy elementarnykh prisoedinënnykh grupp Shevalle tipov $A_l$, $D_l$, $E_l$ nad lokalnymi koltsami s $1/2$”, Algebra i logika, 48:4 (2009), 443–470 ; arxiv: math/0702046v2[math.GR] | MR | Zbl

[5] Vavilov N. A., Luzgarëv A. Yu., “Normalizator gruppy Shevalle tipa $\mathrm E_6$”, Algebra i analiz, 19:5 (2007), 37–64 | MR

[6] Abe E., “Chevalley groups over local rings”, Tôhoku Math. J., 21:3 (1969), 474–494 | DOI | MR | Zbl

[7] Abe E., Suzuki K., “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 28:1 (1976), 185–198 | DOI | MR | Zbl

[8] Borel A., Tits J., “Homomorphismes “abstraits” de groupes algébriques simples”, Ann. Math., 73 (1973), 499–571 | DOI | MR

[9] Bourbaki N., Groupes et algébres de Lie, Hermann, 1968 | MR

[10] Carter R. W., Simple Groups of Lie Type, Wiley, London, 1989 | MR | Zbl

[11] Carter R. W., Chen Y., “Automorphisms of affine Kac–Moody groups and related Chevalley groups over rings”, J. Algebra, 155 (1993), 44–94 | DOI | MR | Zbl

[12] Chen Y., “Isomorphic Chevalley groups over integral domains”, Rend. Sem. Mat. Univ. Padova, 92 (1994), 231–237 | MR | Zbl

[13] Chen Y., “Automorphisms of simple Chevalley groups over $\mathbb Q$-algebras”, Tôhoku Math. J., 348 (1995), 81–97 | DOI | MR

[14] Chen Y., “On representations of elementary subgroups of Chevalley groups over algebras”, Proc. Amer. Math. Soc., 123:8 (1995), 2357–2361 | DOI | MR | Zbl

[15] Chen Y., “Isomorphisms of adjoint Chevalley groups over integral domains”, Trans. Amer. Math. Soc., 348:2 (1996), 1–19 | DOI | MR

[16] Chen Y., “Isomorphisms of Chevalley groups over algebras”, J. Algebra, 226 (2000), 719–741 | DOI | MR | Zbl

[17] Chevalley C., “Certains schémas de groupes semi-simples”, Sem. Bourbaki, 219, 1960–1961, 1–16 | MR

[18] Demazure M., Gabriel P., Groupes algébriques, I, North-Holland, Amsterdam, 1970 | MR | Zbl

[19] Humphreys J. E., Introduction to Lie Algebras and Representation Theory, Springer, New York, 1978 | MR | Zbl

[20] Humphreys J. F., “On the automorphisms of infinite Chevalley groups”, Can. J. Math., 21 (1969), 908–911 | DOI | MR | Zbl

[21] Klyachko A. A., Automorphisms and isomorphisms of Chevalley groups and algebras, , 2007 arxiv: 0708.2256v3[math.GR] | MR

[22] Matsumoto H., “Sur les sous-groupes arithmétiques des groupes semi-simples deployés”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 1–62 | MR | Zbl

[23] Steinberg R., “Automorphisms of finite linear groups”, Can. J. Math., 121 (1960), 606–615 | DOI | MR

[24] Steinberg R., Lectures on Chevalley Groups, Yale University, 1967 | MR

[25] Vavilov N. A., “Structure of Chevalley groups over commutative rings”, Proc. Conf. Non-Associative Algebras and Related Topics, (Hiroshima–1990), World Scientific, London, 1991, 219–335 | MR | Zbl

[26] Vavilov N. A., Plotkin E. B., “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Appl. Math., 45 (1996), 73–113 | DOI | MR | Zbl