On finitely generated soluble non-Hopfian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 81-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

There is a continuum of 3-generator soluble non-Hopfian groups that generate pairwise distinct varieties of groups. Each countable (soluble) group is subnormally embeddable into a 3-generator (soluble) non-Hopfian group. As an illustration to a problem of Neumann, we find a continuum of nonmetanilpotent varieties that contain finitely generated non-Hopfian groups and contain noncountably many pairwise nonisomorphic finitely generated groups.
@article{FPM_2009_15_1_a5,
     author = {V. H. Mikaelian},
     title = {On finitely generated soluble {non-Hopfian} groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {81--98},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a5/}
}
TY  - JOUR
AU  - V. H. Mikaelian
TI  - On finitely generated soluble non-Hopfian groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 81
EP  - 98
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a5/
LA  - ru
ID  - FPM_2009_15_1_a5
ER  - 
%0 Journal Article
%A V. H. Mikaelian
%T On finitely generated soluble non-Hopfian groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 81-98
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a5/
%G ru
%F FPM_2009_15_1_a5
V. H. Mikaelian. On finitely generated soluble non-Hopfian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 81-98. http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a5/

[1] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980 | MR

[2] Maltsev A. I., “Ob izomorfnom predstavlenii beskonechnykh grupp matritsami”, Mat. sb., 8(50):3 (1940), 405–422 | MR | Zbl

[3] Olshanskii A. Yu., “O probleme konechnogo bazisa tozhdestv v gruppakh”, Izv. AN SSSR. Ser. mat., 34:2 (1970), 376–384 | MR | Zbl

[4] Dark R., “On subnormal embedding theorems of groups”, J. London Math. Soc., 43 (1968), 387–390 | DOI | MR | Zbl

[5] Groves J. R. J., “On some finiteness conditions for varieties of metanilpotent groups”, Arch. Math., 24 (1973), 252–268 | DOI | MR | Zbl

[6] Hall P., “Finiteness conditions for soluble groups”, Proc. London Math. Soc. (3), 4 (1954), 419–436 | DOI | MR | Zbl

[7] Hall P., “The Frattini subgroups of finitely generated groups”, Proc. London Math. Soc. (3), 11 (1961), 327–352 | DOI | MR | Zbl

[8] Heineken H., “Normal embeddings of $p$-groups into $p$-groups”, Proc. Edinburgh Math. Soc., 35 (1992), 309–314 | DOI | MR | Zbl

[9] Heineken H., “On normal embedding of subgroups”, Geom. Dedicata, 83 (2000), 211–216 | DOI | MR | Zbl

[10] Heineken H., Mikaelian V. H., “On normal verbal embeddings of groups”, J. Math. Sci., 100:1 (2000), 1915–1924 | DOI | MR | Zbl

[11] Higman G., “A finitely related group with an isomorphic proper factor group”, J. London Math. Soc., 26 (1951), 59–61 | DOI | MR | Zbl

[12] Hopf H., “Beiträge zur Klassifizierung der Flächenabbildungen”, J. Reine Angew. Math., 165 (1931), 225–236 | DOI | Zbl

[13] Miller C. F., Schupp P. E., “On embeddings into Hopfian groups”, J. Algebra, 17 (1971), 171–176 | DOI | MR | Zbl

[14] Mikaelian V. H., “Subnormal embedding theorems for groups”, J. London Math. Soc., 62 (2000), 398–406 | DOI | MR | Zbl

[15] Mikaelian V. H., “On embeddings of countable generalized soluble groups in two-generated groups”, J. Algebra, 250 (2002), 1–17 | DOI | MR | Zbl

[16] Mikaelian V. H., “An embedding construction for ordered groups”, J. Aust. Math. Soc. (A), 74 (2003), 379–392 | DOI | MR | Zbl

[17] Mikaelian V. H., “Infinitely many not locally soluble $SI^*$-groups”, Ricerche Mat., 52 (2003), 1–19 | MR | Zbl

[18] Mikaelian V. H., “On embedding properties of SD-groups”, Internat. J. Math. Math. Sci., 2004, no. 2, 65–76 | DOI | MR | Zbl

[19] Neumann B. H., “A two-generator group isomorphic to a proper factor group”, J. London Math. Soc., 25 (1950), 247–248 | DOI | MR | Zbl

[20] Neumann B. H., “On a problem of Hopf”, J. London Math. Soc., 28 (1953), 351–353 | DOI | MR | Zbl

[21] Neumann B. H., “An essay on free products of groups with amalgamations”, Philos. Trans. Roy. Soc. London Ser. A, 246 (1954), 503–554 | DOI | MR | Zbl

[22] Neumann B. H., “Embedding theorems for ordered groups”, J. London Math. Soc., 35 (1960), 503–512 | DOI | MR | Zbl

[23] Neumann B. H., “Embedding theorems for groups”, Nieuw Arch. Wisk. (3), 16 (1968), 73–78 | MR | Zbl

[24] Neumann B. H., Neumann H., “Embedding theorems for groups”, J. London Math. Soc., 34 (1959), 465–479 | DOI | MR | Zbl

[25] Neumann H., Varieties of Groups, Springer, Berlin, 1967 | MR | Zbl

[26] Robinson D. J. S., A Course in the Theory of Groups, Springer, Berlin, 1996 | MR

[27] Schupp P. E., “A note on non-Hopfian groups”, J. London Math. Soc. (2), 16 (1977), 235–236 | DOI | MR | Zbl