On linearly ordered linear algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 53-63
Voir la notice de l'article provenant de la source Math-Net.Ru
The Kopytov order for any algebras over a field is considered. Necessary and sufficient conditions for an algebra to be a linearly ordered algebra are presented. Some results concerning the properties of ideals of linearly ordered algebras are obtained. Some examples of algebras with the Kopytov order are described. The Kopytov order for these examples induces the order on other algebraic objects.
@article{FPM_2009_15_1_a3,
author = {J. V. Kochetova and E. E. Shirshova},
title = {On linearly ordered linear algebras},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {53--63},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a3/}
}
J. V. Kochetova; E. E. Shirshova. On linearly ordered linear algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 53-63. http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a3/