On linearly ordered linear algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 53-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Kopytov order for any algebras over a field is considered. Necessary and sufficient conditions for an algebra to be a linearly ordered algebra are presented. Some results concerning the properties of ideals of linearly ordered algebras are obtained. Some examples of algebras with the Kopytov order are described. The Kopytov order for these examples induces the order on other algebraic objects.
@article{FPM_2009_15_1_a3,
     author = {J. V. Kochetova and E. E. Shirshova},
     title = {On linearly ordered linear algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {53--63},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a3/}
}
TY  - JOUR
AU  - J. V. Kochetova
AU  - E. E. Shirshova
TI  - On linearly ordered linear algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 53
EP  - 63
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a3/
LA  - ru
ID  - FPM_2009_15_1_a3
ER  - 
%0 Journal Article
%A J. V. Kochetova
%A E. E. Shirshova
%T On linearly ordered linear algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 53-63
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a3/
%G ru
%F FPM_2009_15_1_a3
J. V. Kochetova; E. E. Shirshova. On linearly ordered linear algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 53-63. http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a3/

[1] Agalakov S. A., Shtern A. S., “Svobodnye proizvedeniya lineino uporyadochivaemykh algebr Li”, Sib. mat. zhurn., 23:3 (1982), 5–9 | MR | Zbl

[2] Andrunakievich V. A., Ryabukhin Yu. M., Radikaly algebr i strukturnaya teoriya, Nauka, M., 1979 | MR

[3] Birkgof G., Teoriya reshëtok, Nauka, M., 1984 | MR

[4] Golod E. S., “O nil-algebrakh i finitno-approksimiruemykh $p$-gruppakh”, Izv. AN SSSR. Ser. mat., 28:2 (1964), 273–276 | MR | Zbl

[5] Dzhekobson N., Stroenie kolets, Izd. inostr. lit., M., 1961 | MR

[6] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1972 | MR | Zbl

[7] Kopytov V. M., “Uporyadochenie algebr Li”, Algebra i logika, 11:3 (1972), 295–325 | MR | Zbl

[8] Kopytov V. M., “Reshëtochno uporyadochennye algebry Li”, Sib. mat. zhurn., 18:3 (1977), 595–607 | MR | Zbl

[9] Kopytov V. M., Reshëtochno uporyadochennye gruppy, Nauka, M., 1984 | MR | Zbl

[10] Kurosh A. G., Teoriya grupp, Nauka, M., 1967 | MR | Zbl

[11] Medvedev N. Ya., “O prodolzhenii poryadkov algebr Li”, Sib. mat. zhurn., 18:2 (1977), 469–471 | MR | Zbl

[12] Medvedev N. Ya., “O reshëtkakh mnogoobrazii reshëtochno uporyadochennykh grupp i algebr Li”, Algebra i logika, 16:1 (1977), 40–45 | MR | Zbl

[13] Medvedev N. Ya., “K teorii reshëtochno uporyadochennykh kolets”, Mat. zametki, 41:4 (1987), 484–489 | MR | Zbl

[14] Fuks L., Chastichno uporyadochennye algebraicheskie sistemy, Mir, M., 1965 | MR