On the representation of substitutions as products of a transposition and a full cycle
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 31-51
Cet article a éte moissonné depuis la source Math-Net.Ru
A method of solving equations of the form $g^{y_1}\cdot h\cdot g^{y_2}\cdot h\cdot\ldots\cdot g^{y_l}\cdot h\cdot g^{y_{l+1}}=\sigma$ in the symmetric group $\mathrm S_n$ is proposed, where $h$ is a transposition, $g$ is a full cycle, and $\sigma\in\mathrm S_n$. The method is based on building all sets of generalized inversions of the bottom line of the substitution $\sigma$ by means of a system of Boolean equations associated with $\sigma$. An example of solving an equation in a group $\mathrm S_6$ is given.
@article{FPM_2009_15_1_a2,
author = {A. Yu. Zubov},
title = {On the representation of substitutions as products of a~transposition and a~full cycle},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {31--51},
year = {2009},
volume = {15},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a2/}
}
A. Yu. Zubov. On the representation of substitutions as products of a transposition and a full cycle. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 31-51. http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a2/
[1] Glukhov M. M., Zubov A. Yu., “O dlinakh simmetricheskikh i znakoperemennykh grupp podstanovok v razlichnykh sistemakh obrazuyuschikh (obzor)”, Matematicheskie voprosy kibernetiki, 8, Nauka, Fizmatlit, M., 1999, 5–32 | MR
[2] Glukhov M. M., Pogorelov B. A., “O nekotorykh primeneniyakh grupp v kriptografii”, Matematika i bezopasnost informatsionnykh tekhnologii, Materialy konferentsii (MGU, 28–29 oktyabrya 2004 g.), MTsNMO, M., 2005, 19–31
[3] Zubov A. Yu., “O diametre gruppy $\mathrm S_n$ otnositelno sistemy obrazuyuschikh, sostoyaschei iz polnogo tsikla i transpozitsii”, Trudy po diskretnoi matematike. RAN, Akademiya kriptografii RF, Tom 2, TVP, M., 1998, 112–150 | MR | Zbl