Enumerating functions for nonnegative integer coordinates of $L$-dimensional vectors
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 147-155
Voir la notice de l'article provenant de la source Math-Net.Ru
The enumerating function $C^L(X_1,\dots,X_L)$, which bijectively maps tuples of length $L$ of nonnegative integers to nonnegative integers $Z=C^L(X_1,\dots,X_L)$, is represented as a sum of $L$ figurate numbers.
@article{FPM_2009_15_1_a10,
author = {S. L. Chernyshev},
title = {Enumerating functions for nonnegative integer coordinates of $L$-dimensional vectors},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {147--155},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a10/}
}
TY - JOUR AU - S. L. Chernyshev TI - Enumerating functions for nonnegative integer coordinates of $L$-dimensional vectors JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2009 SP - 147 EP - 155 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a10/ LA - ru ID - FPM_2009_15_1_a10 ER -
S. L. Chernyshev. Enumerating functions for nonnegative integer coordinates of $L$-dimensional vectors. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 147-155. http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a10/