Solution of the problem of expressibility in amalgamated products of groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 23-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of expressibility is solved in amalgamated products of groups.
@article{FPM_2009_15_1_a1,
     author = {I. V. Dobrynina},
     title = {Solution of the problem of expressibility in amalgamated products of groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {23--30},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a1/}
}
TY  - JOUR
AU  - I. V. Dobrynina
TI  - Solution of the problem of expressibility in amalgamated products of groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2009
SP  - 23
EP  - 30
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a1/
LA  - ru
ID  - FPM_2009_15_1_a1
ER  - 
%0 Journal Article
%A I. V. Dobrynina
%T Solution of the problem of expressibility in amalgamated products of groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2009
%P 23-30
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a1/
%G ru
%F FPM_2009_15_1_a1
I. V. Dobrynina. Solution of the problem of expressibility in amalgamated products of groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 15 (2009) no. 1, pp. 23-30. http://geodesic.mathdoc.fr/item/FPM_2009_15_1_a1/

[1] Bardakov V. G., “O shirine verbalnykh podgrupp nekotorykh svobodnykh konstruktsii”, Algebra i logika, 36:5 (1997), 494–517 | MR | Zbl

[2] Grigorchuk R. I., “Ogranichennye kogomologii gruppovykh konstruktsii”, Mat. zametki, 59:4 (1996), 546–550 | DOI | MR | Zbl

[3] Dobrynina I. V., “O shirine v svobodnykh proizvedeniyakh s ob'edineniem”, Mat. zametki, 68:3 (2000), 353–359 | DOI | MR | Zbl

[4] Merzlyakov Yu. I., Ratsionalnye gruppy, Nauka, M., 1987 | MR | Zbl

[5] Faiziev V. A., “A problem of expressibility in some amalgamated products of groups”, J. Aust. Math. Soc., 71 (2001), 105–115 | DOI | MR

[6] Rhemtulla A. H., “A problem of bounded expressibility in free products”, Proc. Cambridge Phil. Soc., 64:3 (1969), 573–584 | DOI | MR