Automorphisms and model-theory questions for nilpotent matrix groups and rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 159-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R'=\mathrm{NT}(m, S)$. The purpose of the paper is the investigation of elementary equivalences $\mathrm{UT}(n,K)\equiv\mathrm{UT}(m,S)$ and $\Lambda(R)\equiv\Lambda(R')$ for arbitrary associative coefficient rings with identity. The main theorem gives the description of such equivalences for $n>4$. In addition, we investigate isomorphisms and elementary equivalence of Jordan niltriangular matrix rings.
@article{FPM_2008_14_8_a9,
     author = {V. M. Levchuk and E. V. Minakova},
     title = {Automorphisms and model-theory questions for nilpotent matrix groups and rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {159--168},
     publisher = {mathdoc},
     volume = {14},
     number = {8},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a9/}
}
TY  - JOUR
AU  - V. M. Levchuk
AU  - E. V. Minakova
TI  - Automorphisms and model-theory questions for nilpotent matrix groups and rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 159
EP  - 168
VL  - 14
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a9/
LA  - ru
ID  - FPM_2008_14_8_a9
ER  - 
%0 Journal Article
%A V. M. Levchuk
%A E. V. Minakova
%T Automorphisms and model-theory questions for nilpotent matrix groups and rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 159-168
%V 14
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a9/
%G ru
%F FPM_2008_14_8_a9
V. M. Levchuk; E. V. Minakova. Automorphisms and model-theory questions for nilpotent matrix groups and rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 159-168. http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a9/

[1] Ershov Yu. L., “Elementarnye teorii grupp”, DAN SSSR, 203 (1972), 1240–1243 | Zbl

[2] Keisler G., Chen Ch. Ch., Teoriya modelei, Mir, M., 1977 | MR

[3] Levchuk V. M., “Avtomorfizmy nekotorykh nilpotentnykh matrichnykh grupp i kolets”, DAN SSSR, 16:3 (1975), 756–760 | Zbl

[4] Levchuk V. M., “Svyazi unitreugolnoi gruppy s nekotorymi koltsami. II. Gruppy avtomorfizmov”, Sib. mat. zhurn., 24:4 (1983), 543–557 | MR | Zbl

[5] Maltsev A. I., “Ob odnom sootvetstvii mezhdu koltsami i gruppami”, Mat. sb., 50(92):3 (1960), 257–266 | MR | Zbl

[6] Maltsev A. I., “Elementarnye svoistva lineinykh grupp”, Nekotorye problemy v matematike i mekhanike, Izd-vo SO AN SSSR, Novosibirsk, 1961, 110–132

[7] Minakova E. V., “Elementarno ekvivalentnye koltsa Li niltreugolnykh matrits nad kommutativnymi koltsami koeffitsientov”, Vestn. NGU, 8:3 (2008), 100–104 | Zbl

[8] Remeslennikov V. N., Romankov V. A., “Teoretiko-modelnye i algoritmicheskie voprosy teorii grupp”, Itogi nauki i tekhn. Ser. Algebra, topologiya, geometriya, 21, VINITI, M., 1983, 3–79 | MR | Zbl

[9] Belegradek O. V., “Model theory of unitriangular groups”, Amer. Math. Soc. Transl., 195:2 (1999), 1–116 | MR | Zbl

[10] Gibbs J. A., “Automorphisms of certain unipotent groups”, J. Algebra, 14:2 (1970), 203–228 | DOI | MR | Zbl

[11] Hodges W., Model Theory, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[12] Kuzucuoglu F., Levchuk V. M., “Isomorphisms of certain locally nilpotent finitary groups and associated rings”, Acta Appl. Math., 82 (2004), 169–181 | DOI | MR | Zbl

[13] Rose B. I., “The $\chi_1$-categoricity of strictly upper triangular matrix rings over algebraically closed fields”, J. Symbolic Logic, 43:2 (1978), 250–259 | DOI | MR | Zbl

[14] Videla C. R., “On the model theory of the ring $\mathrm{NT}(n,R)$”, J. Pure Appl. Algebra, 55 (1988), 289–302 | DOI | MR | Zbl

[15] Videla C. R., “On the Mal'cev correspondence”, Proc. Amer. Math. Soc., 109 (1990), 493–502 | DOI | MR | Zbl

[16] Wang X. T., “Decomposition of Jordan automorphisms of strictly triangular matrix algebra over commutative rings”, Commun. Algebra, 35 (2007), 1133–1140 | DOI | MR | Zbl

[17] Wang X. T., You H., “Decomposition of Jordan automorphisms of strictly triangular matrix algebra over local rings”, Linear Algebra Appl., 392 (2004), 183–193 | DOI | MR | Zbl

[18] Wheeler W. H., “Model theory of strictly upper triangular matrix ring”, J. Symbolic Logic, 45 (1980), 455–463 | DOI | MR | Zbl