Automorphisms and model-theory questions for nilpotent matrix groups and rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 159-168
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R'=\mathrm{NT}(m, S)$. The purpose of the paper is the investigation of elementary equivalences $\mathrm{UT}(n,K)\equiv\mathrm{UT}(m,S)$ and $\Lambda(R)\equiv\Lambda(R')$ for arbitrary associative coefficient rings with identity. The main theorem gives the description of such equivalences for $n>4$. In addition, we investigate isomorphisms and elementary equivalence of Jordan niltriangular matrix rings.
@article{FPM_2008_14_8_a9,
author = {V. M. Levchuk and E. V. Minakova},
title = {Automorphisms and model-theory questions for nilpotent matrix groups and rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {159--168},
publisher = {mathdoc},
volume = {14},
number = {8},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a9/}
}
TY - JOUR AU - V. M. Levchuk AU - E. V. Minakova TI - Automorphisms and model-theory questions for nilpotent matrix groups and rings JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2008 SP - 159 EP - 168 VL - 14 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a9/ LA - ru ID - FPM_2008_14_8_a9 ER -
V. M. Levchuk; E. V. Minakova. Automorphisms and model-theory questions for nilpotent matrix groups and rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 159-168. http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a9/