Automorphisms and model-theory questions for nilpotent matrix groups and rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 159-168

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R'=\mathrm{NT}(m, S)$. The purpose of the paper is the investigation of elementary equivalences $\mathrm{UT}(n,K)\equiv\mathrm{UT}(m,S)$ and $\Lambda(R)\equiv\Lambda(R')$ for arbitrary associative coefficient rings with identity. The main theorem gives the description of such equivalences for $n>4$. In addition, we investigate isomorphisms and elementary equivalence of Jordan niltriangular matrix rings.
@article{FPM_2008_14_8_a9,
     author = {V. M. Levchuk and E. V. Minakova},
     title = {Automorphisms and model-theory questions for nilpotent matrix groups and rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {159--168},
     publisher = {mathdoc},
     volume = {14},
     number = {8},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a9/}
}
TY  - JOUR
AU  - V. M. Levchuk
AU  - E. V. Minakova
TI  - Automorphisms and model-theory questions for nilpotent matrix groups and rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 159
EP  - 168
VL  - 14
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a9/
LA  - ru
ID  - FPM_2008_14_8_a9
ER  - 
%0 Journal Article
%A V. M. Levchuk
%A E. V. Minakova
%T Automorphisms and model-theory questions for nilpotent matrix groups and rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 159-168
%V 14
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a9/
%G ru
%F FPM_2008_14_8_a9
V. M. Levchuk; E. V. Minakova. Automorphisms and model-theory questions for nilpotent matrix groups and rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 159-168. http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a9/