On the lower weakly solvable $l$-radical of lattice ordered Lie algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 137-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of the lower weakly solvable radical of Lie algebras is important in the study of Lie algebras. The purpose of this paper is to investigate the generalization of this concept to lattice ordered Lie algebras over partially ordered fields. Some results concerning properties of the lower weakly solvable $l$-radical of lattice ordered Lie algebras are obtained. Necessary and sufficient conditions for the $l$-prime radical of a Lie $l$-algebra to be equal to the lower weakly solvable $l$-radical of the Lie $l$-algebra are presented.
@article{FPM_2008_14_8_a7,
     author = {J. V. Kochetova},
     title = {On the lower weakly solvable $l$-radical of lattice ordered {Lie} algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {137--149},
     publisher = {mathdoc},
     volume = {14},
     number = {8},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a7/}
}
TY  - JOUR
AU  - J. V. Kochetova
TI  - On the lower weakly solvable $l$-radical of lattice ordered Lie algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 137
EP  - 149
VL  - 14
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a7/
LA  - ru
ID  - FPM_2008_14_8_a7
ER  - 
%0 Journal Article
%A J. V. Kochetova
%T On the lower weakly solvable $l$-radical of lattice ordered Lie algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 137-149
%V 14
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a7/
%G ru
%F FPM_2008_14_8_a7
J. V. Kochetova. On the lower weakly solvable $l$-radical of lattice ordered Lie algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 137-149. http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a7/

[1] Kopytov V. M., “Uporyadochenie algebr Li”, Algebra i logika, 11:3 (1972), 295–325 | MR | Zbl

[2] Kopytov V. M., Reshetochno uporyadochennye gruppy, Nauka, M., 1984 | MR | Zbl

[3] Kochetova Yu. V., “O nekotorykh svoistvakh idealov reshetochno uporyadochennykh algebr Li”, Vestn. SamGU. Estestvennonauchnaya ser. Matematika, 2007, no. 7(57), 73–83

[4] Kochetova Yu. V., “Pervichnye idealy reshetochno uporyadochennykh algebr Li”, Mezhdunar. algebraicheskaya konf., posvyasch. 100-letiyu so dnya rozhdeniya A. G. Kurosha, Tezisy dokladov, M., 2008, 140–141

[5] Kochetova Yu. V., “Pervichnyi radikal reshetochno uporyadochennykh algebr Li”, Uspekhi mat. nauk, 63:5 (2008), 191–192 | MR | Zbl

[6] Kochetova Yu. V., Shirshova E. E., “O gomomorfizmakh chastichno uporyadochennykh algebr Li”, Izbrannye voprosy algebry, Sb. statei, posvyaschennyi pamyati N. Ya. Medvedeva, Izd-vo Altaiskogo un-ta, Barnaul, 2007, 131–142

[7] Kochetova Yu. V., Shirshova E. E., “O estestvennom gomomorfizme reshetochno uporyadochennykh algebr Li”, Mezhdunar. konf. po algebre i teorii chisel, posvyaschennaya 80-letiyu V. E. Voskresenskogo, Tezisy dokladov, Univers grupp, Samara, 2007, 29–30 | Zbl

[8] Pikhtilkov S. A., Strukturnaya teoriya spetsialnykh algebr Li, Izd-vo Tulskogo gos. ped. un-ta im. L. N. Tolstogo, Tula, 2005

[9] Fuks L., Chastichno uporyadochennye algebraicheskie sistemy, Mir, M., 1965 | MR