On the freedom problem in Coxeter groups of extra large type
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 101-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, it is proved that in a Coxeter group of extra large type every torsion-free, finitely generated subgroup is free.
@article{FPM_2008_14_8_a4,
     author = {I. V. Dobrynina},
     title = {On the freedom problem in {Coxeter} groups of extra large type},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {101--116},
     publisher = {mathdoc},
     volume = {14},
     number = {8},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a4/}
}
TY  - JOUR
AU  - I. V. Dobrynina
TI  - On the freedom problem in Coxeter groups of extra large type
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 101
EP  - 116
VL  - 14
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a4/
LA  - ru
ID  - FPM_2008_14_8_a4
ER  - 
%0 Journal Article
%A I. V. Dobrynina
%T On the freedom problem in Coxeter groups of extra large type
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 101-116
%V 14
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a4/
%G ru
%F FPM_2008_14_8_a4
I. V. Dobrynina. On the freedom problem in Coxeter groups of extra large type. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 101-116. http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a4/

[1] Bezverkhnii V. N., Dobrynina I. V., “Ob elementakh konechnogo poryadka v gruppakh Kokstera bolshogo tipa”, Izv. Tulskogo gos. un-ta. Ser. Matematika. Mekhanika. Informatika, 9:1 (2003), 13–22 | MR

[2] Bezverkhnii V. N., Dobrynina I. V., “Reshenie problemy sopryazhënnosti slov v gruppakh Kokstera bolshogo tipa”, Chebyshëvskii sb., 4:1(5) (2003), 10–33 | MR | Zbl

[3] Bezverkhnii V. N., Dobrynina I. V., “Reshenie problemy vkhozhdeniya v tsiklicheskuyu podgruppu v gruppakh Kokstera bolshogo tipa”, Izv. Tulskogo gos. un-ta. Ser. Matematika. Mekhanika. Informatika, 11:1 (2004), 47–61 | MR

[4] Bezverkhnii V. N., Dobrynina I. V., “Reshenie problemy obobschënnoi sopryazhënnosti slov v gruppakh Kokstera bolshogo tipa”, Diskret. mat., 17:3 (2005), 123–145 | MR | Zbl

[5] Bezverkhnii V. N., Dobrynina I. V., “Reshenie problemy stepennoi sopryazhënnosti slov v gruppakh Kokstera ekstrabolshogo tipa”, Diskret. mat., 20:3 (2008), 101–110 | MR | Zbl

[6] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Nauka, M., 1980

[7] Appel K., “On Artin groups and Coxeter groups of large type”, Contributions to Group Theory, Contemp. Math., 33, Amer. Math. Soc., 1984, 50–78 | MR

[8] Kapovich I., Schupp P., “Bounded rank subgroups of Coxeter groups, Artin groups and one-relator groups with torsion”, Proc. London Math. Soc. III Ser., 88:1 (2004), 89–113 | DOI | MR | Zbl