On independent systems in unitary relatively free algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 69-71
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper introduces a family of polynomial systems of quite general form (triangular systems) in a unitary relatively free algebra $F$ with associative degrees. These systems generate a subalgebra that is isomorphic to the algebra $F$. The proof of independency is based on some simple algebro-geometric consideration.
@article{FPM_2008_14_8_a2,
author = {A. V. Grishin},
title = {On independent systems in unitary relatively free algebras},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {69--71},
publisher = {mathdoc},
volume = {14},
number = {8},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a2/}
}
A. V. Grishin. On independent systems in unitary relatively free algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 69-71. http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a2/