On independent systems in unitary relatively free algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 69-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper introduces a family of polynomial systems of quite general form (triangular systems) in a unitary relatively free algebra $F$ with associative degrees. These systems generate a subalgebra that is isomorphic to the algebra $F$. The proof of independency is based on some simple algebro-geometric consideration.
@article{FPM_2008_14_8_a2,
     author = {A. V. Grishin},
     title = {On independent systems in unitary relatively free algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {69--71},
     publisher = {mathdoc},
     volume = {14},
     number = {8},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a2/}
}
TY  - JOUR
AU  - A. V. Grishin
TI  - On independent systems in unitary relatively free algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 69
EP  - 71
VL  - 14
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a2/
LA  - ru
ID  - FPM_2008_14_8_a2
ER  - 
%0 Journal Article
%A A. V. Grishin
%T On independent systems in unitary relatively free algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 69-71
%V 14
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a2/
%G ru
%F FPM_2008_14_8_a2
A. V. Grishin. On independent systems in unitary relatively free algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 8, pp. 69-71. http://geodesic.mathdoc.fr/item/FPM_2008_14_8_a2/

[1] Grishin A. V., “Pokazatel rosta mnogoobraziya algebr i ego prilozheniya”, Algebra i logika, 26:5 (1987), 536–557 | MR | Zbl

[2] Grishin A. V., Tsybulya L. M., “O $(p,n)$-probleme”, Vestnik SamGU. Estestvennonauchnaya seriya. Matematika, 57:7 (2007), 35–55