Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2008_14_7_a8, author = {V. N. Zhuravlev}, title = {Admissible quivers}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {121--128}, publisher = {mathdoc}, volume = {14}, number = {7}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a8/} }
V. N. Zhuravlev. Admissible quivers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 121-128. http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a8/
[1] Drozd Yu. A., Kirichenko V. V., Konechnomernye algebry, Vischa shkola, Kiev, 1980 | MR | Zbl
[2] Zavadskii A. G., Kirichenko V. V., “Moduli bez krucheniya nad pervichnymi koltsami”, Zap. nauch. sem. LOMI AN SSSR, 57, 1976, 100–116 | MR | Zbl
[3] Kirichenko V. V., Khibina M. A., “Polusovershennye poludistributivnye koltsa”, Beskonechnye gruppy i primykayuschie algebraicheskie struktury, In-t matematiki, Kiev, 1993, 457–480 | MR | Zbl
[4] Chernousova Zh. T., Dokuchaev M. A., Khibina M. A., Kirichenko V. V., Miroshnichenko S. G., Zhuravlev V. N., “Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I”, Algebra Discrete Math., 1 (2002), 32–63 | MR | Zbl
[5] Chernousova Zh. T., Dokuchaev M. A., Khibina M. A., Kirichenko V. V., Miroshnichenko S. G., Zhuravlev V. N., “Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II”, Algebra Discrete Math., 2 (2003), 47–86 | MR | Zbl
[6] Hazewinkel M., Gubareni N., Kirichenko V. V., Algebras, Rings and Modules, Vol. 1, Math. Appl., 575, Kluwer, Dordrecht, 2004 | MR | Zbl
[7] Hazewinkel M., Gubareni N., Kirichenko V. V., Algebras, Rings and Modules, Vol. 2, Math. Appl., 586, Springer, Dordrecht, 2007 | MR | Zbl
[8] Kirichenko V. V., Zelensky A. V., Zhuravlev V. N., “Exponent matrices and tiled orders over discrete valuation rings”, Algebra Comput., 15:5–6 (2005), 997–1012 | DOI | MR | Zbl
[9] Tuganbaev A. A., Semidistributive Modules and Rings, Kluwer, Dordrecht, 1998 | MR | Zbl
[10] Wiedemann A., Roggenkamp K. W., “Path order of global dimension two”, J. Algebra, 80 (1983), 113–133 | DOI | MR | Zbl