Model-theoretic properties of free, projective, and flat $S$-acts
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 63-110
Voir la notice de l'article provenant de la source Math-Net.Ru
This is the second in a series of articles surveying the body of work on the model theory of $S$-acts over a monoid $S$. The first concentrated on the theory of regular $S$-acts. Here we review the material on model-theoretic properties of free, projective, and (strongly, weakly) flat $S$-acts. We consider questions of axiomatizability, completeness, model completeness, and stability for these classes. Most but not all of the results have already appeared; we remark that the description of those monoids $S$ such that the class of free left $S$-acts is axiomatizable, is new.
@article{FPM_2008_14_7_a6,
author = {V. Gould and A. V. Mikhalev and E. A. Palyutin and A. A. Stepanova},
title = {Model-theoretic properties of free, projective, and flat $S$-acts},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {63--110},
publisher = {mathdoc},
volume = {14},
number = {7},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a6/}
}
TY - JOUR AU - V. Gould AU - A. V. Mikhalev AU - E. A. Palyutin AU - A. A. Stepanova TI - Model-theoretic properties of free, projective, and flat $S$-acts JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2008 SP - 63 EP - 110 VL - 14 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a6/ LA - ru ID - FPM_2008_14_7_a6 ER -
%0 Journal Article %A V. Gould %A A. V. Mikhalev %A E. A. Palyutin %A A. A. Stepanova %T Model-theoretic properties of free, projective, and flat $S$-acts %J Fundamentalʹnaâ i prikladnaâ matematika %D 2008 %P 63-110 %V 14 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a6/ %G ru %F FPM_2008_14_7_a6
V. Gould; A. V. Mikhalev; E. A. Palyutin; A. A. Stepanova. Model-theoretic properties of free, projective, and flat $S$-acts. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 63-110. http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a6/