Model-theoretic properties of free, projective, and flat $S$-acts
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 63-110

Voir la notice de l'article provenant de la source Math-Net.Ru

This is the second in a series of articles surveying the body of work on the model theory of $S$-acts over a monoid $S$. The first concentrated on the theory of regular $S$-acts. Here we review the material on model-theoretic properties of free, projective, and (strongly, weakly) flat $S$-acts. We consider questions of axiomatizability, completeness, model completeness, and stability for these classes. Most but not all of the results have already appeared; we remark that the description of those monoids $S$ such that the class of free left $S$-acts is axiomatizable, is new.
@article{FPM_2008_14_7_a6,
     author = {V. Gould and A. V. Mikhalev and E. A. Palyutin and A. A. Stepanova},
     title = {Model-theoretic properties of free, projective, and flat $S$-acts},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {63--110},
     publisher = {mathdoc},
     volume = {14},
     number = {7},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a6/}
}
TY  - JOUR
AU  - V. Gould
AU  - A. V. Mikhalev
AU  - E. A. Palyutin
AU  - A. A. Stepanova
TI  - Model-theoretic properties of free, projective, and flat $S$-acts
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 63
EP  - 110
VL  - 14
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a6/
LA  - ru
ID  - FPM_2008_14_7_a6
ER  - 
%0 Journal Article
%A V. Gould
%A A. V. Mikhalev
%A E. A. Palyutin
%A A. A. Stepanova
%T Model-theoretic properties of free, projective, and flat $S$-acts
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 63-110
%V 14
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a6/
%G ru
%F FPM_2008_14_7_a6
V. Gould; A. V. Mikhalev; E. A. Palyutin; A. A. Stepanova. Model-theoretic properties of free, projective, and flat $S$-acts. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 63-110. http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a6/