Model-theoretic properties of free, projective, and flat $S$-acts
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 63-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

This is the second in a series of articles surveying the body of work on the model theory of $S$-acts over a monoid $S$. The first concentrated on the theory of regular $S$-acts. Here we review the material on model-theoretic properties of free, projective, and (strongly, weakly) flat $S$-acts. We consider questions of axiomatizability, completeness, model completeness, and stability for these classes. Most but not all of the results have already appeared; we remark that the description of those monoids $S$ such that the class of free left $S$-acts is axiomatizable, is new.
@article{FPM_2008_14_7_a6,
     author = {V. Gould and A. V. Mikhalev and E. A. Palyutin and A. A. Stepanova},
     title = {Model-theoretic properties of free, projective, and flat $S$-acts},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {63--110},
     publisher = {mathdoc},
     volume = {14},
     number = {7},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a6/}
}
TY  - JOUR
AU  - V. Gould
AU  - A. V. Mikhalev
AU  - E. A. Palyutin
AU  - A. A. Stepanova
TI  - Model-theoretic properties of free, projective, and flat $S$-acts
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 63
EP  - 110
VL  - 14
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a6/
LA  - ru
ID  - FPM_2008_14_7_a6
ER  - 
%0 Journal Article
%A V. Gould
%A A. V. Mikhalev
%A E. A. Palyutin
%A A. A. Stepanova
%T Model-theoretic properties of free, projective, and flat $S$-acts
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 63-110
%V 14
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a6/
%G ru
%F FPM_2008_14_7_a6
V. Gould; A. V. Mikhalev; E. A. Palyutin; A. A. Stepanova. Model-theoretic properties of free, projective, and flat $S$-acts. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 63-110. http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a6/

[1] Mikhalëv A. V., Ovchinnikova E. V., Palyutin E. A., Stepanova A. A., “Teoretiko-modelnye svoistva regulyarnykh poligonov”, Fundament. i prikl. mat., 10:4 (2004), 107–157 | MR | Zbl

[2] Mustafin T. G., “O stabilnostnoi teorii poligonov”, Teoriya modelei i ee primenenie, Tr. AN SSSR. Sib. otd-e. In-t matematiki, 8, Nauka, Novosibirsk, 1988, 92–108 | MR

[3] Stepanova A. A., “Aksiomatiziruemost i polnota nekotorykh klassov $S$-poligonov”, Algebra i logika, 30 (1991), 583–594 | MR | Zbl

[4] Stepanova A. A., “Monoidy so stabilnymi ploskimi poligonami”, Vestn. Novosibirsk. gos. un-ta. Ser. Matematika, informatika, mekhanika, 2:2 (2002), 64–77 | Zbl

[5] Bulman-Fleming S., “Pullback-flat acts are strongly flat”, Can. Math. Bull., 34 (1991), 456–461 | DOI | MR | Zbl

[6] Bulman-Fleming S., Gould V., “Axiomatisability of weakly flat, flat and projective acts”, Commun. Algebra, 30 (2002), 5575–5593 | DOI | MR | Zbl

[7] Bulman-Fleming S., Normak P., “Monoids over which all flat cyclic right acts are strongly flat”, Semigroup Forum, 50 (1995), 233–241 | DOI | MR | Zbl

[8] Chang C. C., Keisler H. J., Model Theory, North-Holland, Amsterdam, 1973 | Zbl

[9] Dorofeeva M. P., “Hereditary and semi-hereditary monoids”, Semigroup Forum, 4 (1972), 301–311 | DOI | MR | Zbl

[10] Eklof P., Sabbagh G., “Definability problems for modules and rings”, J. Symbolic Logic, 36 (1971), 623–649 | DOI | MR

[11] Fountain J. B., “Perfect semigroups”, Proc. Edinburgh Math. Soc., 20 (1976), 87–93 | DOI | MR | Zbl

[12] Fountain J. B., “Abundant semigroups”, Proc. London Math. Soc., 44 (1982), 103–129 | DOI | MR | Zbl

[13] Fountain J. B., Gould V., Stability of $S$-sets, Preprint, 2001 | Zbl

[14] Gould V., “Axiomatisability problems for $S$-systems”, J. London Math. Soc., 35 (1987), 193–201 | DOI | MR | Zbl

[15] Howie J. M., Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995 | MR | Zbl

[16] Isbell J. R., “Perfect monoids”, Semigroup Forum, 2 (1971), 95–118 | DOI | MR | Zbl

[17] Kilp M., Knauer U., “Characterisation of monoids by torsion-free, flat, projective and free acts”, Arch. Math., 36 (1981), 189–294 | MR

[18] Kilp M., Knauer U., Mikhalev A. V., Monoids, Acts and Categories, Walter de Gruyter, Berlin, 2000 | MR | Zbl

[19] Knauer U., “Projectivity of acts and Morita equivalence of monoids”, Semigroup Forum, 3 (1972), 359–370 | DOI | MR | Zbl

[20] Morley M. D., “Categoricity in power”, Trans. Amer. Math. Soc., 114 (1965), 514–539 | DOI | MR

[21] Pillay A., An Introduction to Stability Theory, Oxford Logic Guides, 8, Clarendon Press, Oxford, 1983 | MR | Zbl

[22] Prest M., The Model Theory of Modules, London Math. Soc. Lect. Note Ser., 130, Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl

[23] Stenström B., “Flatness and localization over monoids”, Math. Nachr., 48 (1971), 315–334 | DOI | MR | Zbl