Regev's and Amitsur's conjectures for codimensions of generalized polynomial identities
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 53-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a finite-dimensional associative algebra over a field of characteristic 0. Then there exist $C\in\mathbb Q_+$ and $t\in\mathbb Z_+$ such that $\mathrm{gc}_n(A)\sim Cn^td^n$ as $n\to\infty$, where $d=\mathrm{PI}\exp(A)$. In particular, Amitsur's and Regev's conjectures hold for the codimensions $\mathrm{gc}_n(A)$ of generalized polynomial identities.
@article{FPM_2008_14_7_a5,
     author = {A. S. Gordienko},
     title = {Regev's and {Amitsur's} conjectures for codimensions of generalized polynomial identities},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {53--62},
     publisher = {mathdoc},
     volume = {14},
     number = {7},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a5/}
}
TY  - JOUR
AU  - A. S. Gordienko
TI  - Regev's and Amitsur's conjectures for codimensions of generalized polynomial identities
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 53
EP  - 62
VL  - 14
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a5/
LA  - ru
ID  - FPM_2008_14_7_a5
ER  - 
%0 Journal Article
%A A. S. Gordienko
%T Regev's and Amitsur's conjectures for codimensions of generalized polynomial identities
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 53-62
%V 14
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a5/
%G ru
%F FPM_2008_14_7_a5
A. S. Gordienko. Regev's and Amitsur's conjectures for codimensions of generalized polynomial identities. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 53-62. http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a5/

[1] Gordienko A. S., “Gipoteza Regeva i kokharaktery tozhdestv assotsiativnykh algebr PI-eksponenty 1 i 2”, Mat. zametki, 83:6 (2008), 815–824 | MR | Zbl

[2] Beidar K. I., Martindale W. S., Mikhalev A. V., Rings with Generalized Polynomial Identities, Marcel Dekker, New York, 1996 | MR | Zbl

[3] Berele A., Regev A., “Asymptotic behaviour of codimensions of p.i. algebras satisfying Capelli identities”, Trans. Amer. Math. Soc., 360 (2008), 5155–5172 | DOI | MR | Zbl

[4] Drensky V. S., “Relations for the cocharacter sequences of T-ideals”, Algebra, Proc. Int. Conf. Memory A. I. Mal'cev, Pt. 2 (Novosibirsk/USSR, 1989), Contemp. Math., 131, Amer. Math. Soc., Providence, 1992, 285–300 | MR

[5] Regev A., “Codimensions and trace codimensions of matrices are asymptotically equal”, Israel J. Math., 48:2–3 (1984), 246–250 | DOI | MR

[6] Zaicev M. V., Giambruno A., Polynomial Identities and Asymptotic Methods, Math. Surveys Monographs, 122, Amer. Math. Soc., Providence, 2005 | MR | Zbl