Anti-isomorphisms of graded endomorphism rings of graded modules close to free ones
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 23-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain the criteria for anti-isomorphism of graded endomorphism rings of the strict gr-generators induced by graded Morita anti-equivalence or a graded anti-semilinear isomorphism.
@article{FPM_2008_14_7_a2,
     author = {I. N. Balaba and A. V. Mikhalev},
     title = {Anti-isomorphisms of graded endomorphism rings of graded modules close to free ones},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {23--36},
     publisher = {mathdoc},
     volume = {14},
     number = {7},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a2/}
}
TY  - JOUR
AU  - I. N. Balaba
AU  - A. V. Mikhalev
TI  - Anti-isomorphisms of graded endomorphism rings of graded modules close to free ones
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 23
EP  - 36
VL  - 14
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a2/
LA  - ru
ID  - FPM_2008_14_7_a2
ER  - 
%0 Journal Article
%A I. N. Balaba
%A A. V. Mikhalev
%T Anti-isomorphisms of graded endomorphism rings of graded modules close to free ones
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 23-36
%V 14
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a2/
%G ru
%F FPM_2008_14_7_a2
I. N. Balaba; A. V. Mikhalev. Anti-isomorphisms of graded endomorphism rings of graded modules close to free ones. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 23-36. http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a2/

[1] Balaba I. N., “Ekvivalentnosti Mority kategorii graduirovannykh modulei”, Uspekhi mat. nauk, 42:3 (1987), 177–178 | MR | Zbl

[2] Balaba I. N., “Refleksivnye graduirovannye moduli”, Algoritmicheskie problemy teorii grupp i polugrupp, TGPI, Tula, 1991, 88–96

[3] Balaba I. N., “Indutsiruemost antiizomorfizmov kolets endomorfizmov graduirovannykh modulei antipolulineinym preobrazovaniem”, Uspekhi mat. nauk, 63:3 (2008), 151–152 | MR | Zbl

[4] Balaba I. N., Mikhalëv A. V., “Izomorfizmy graduirovannykh kolets endomorfizmov graduirovannykh modulei, blizkikh k svobodnym”, Fundament. i prikl. mat., 13:5 (2007), 3–18 | MR

[5] Beidar K. I., Mikhalëv A. V., “Antiizomorfizmy kolets endomorfizmov modulei, blizkikh k svobodnym, indutsirovannye antiekvivalentnostyami Mority”, Tr. seminara im. I. G. Petrovskogo, 19, 1996, 338–344 | MR | Zbl

[6] Ber R., Lineinaya algebra i proektivnaya geometriya, Izd. inostr. lit., M., 1955

[7] Kash F., Koltsa i moduli, Mir, M., 1981

[8] Mikhalëv A. V., “Izomorfizmy kolets endomorfizmov modulei, blizkikh k svobodnym”, Vestn. Mosk. un-ta. Ser. 1. Matematika, mekhanika, 1989, no. 2, 20–27 | MR | Zbl

[9] Feis K., Algebra: koltsa, moduli i kategorii, T. I, Mir, M., 1977

[10] Feis K., Algebra: koltsa, moduli i kategorii, T. II, Mir, M., 1979 | MR

[11] Bolla M. L., “Isomorphisms between endomorphism rings of progenerators”, J. Algebra, 87 (1984), 261–281 | DOI | MR | Zbl

[12] Gewirtzman L., “Anti-isomorphisms of the endomorphism rings of a class of free module”, Math. Ann., 159 (1965), 278–284 | DOI | MR | Zbl

[13] Gewirtzman L., “Anti-isomorphisms of endomorphism rings of torsion-free module”, Math. Z., 98 (1967), 391–400 | DOI | MR | Zbl

[14] Menini C., Nǎstǎsescu C., “When is $R$-gr equivalent to the category of modules?”, J. Pure Appl. Algebra, 1988, no. 3, 277–291 | DOI | MR | Zbl

[15] Menini C., del Rio A., “Morita duality and graded rings”, Commun. Algebra, 19:6 (1991), 1765–1794 | DOI | MR | Zbl

[16] Nǎstǎsescu C., van Oystaeyen F., Graded Ring Theory, North-Holland, Amsterdam, 1982 | MR

[17] Wolfson K. G., “Anti-isomorphism of endomorphism rings of locally free modules”, Math. Z., 202 (1989), 151–159 | DOI | MR | Zbl