Splitting length of Abelian mixed groups of torsion-free rank~1
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 209-221

Voir la notice de l'article provenant de la source Math-Net.Ru

Splitting length of a mixed Abelian group $G$ is defined as the smallest positive integer $n$ such that $\bigotimes\limits^nG$ splits. The task of determining the splitting length of mixed Abelian groups was formulated by Irwin, Khabbaz, and Rayna. In this paper, a criterion for determining whether $\bigotimes\limits^nG$ splits for countable mixed Abelian groups $G$ of torsion-free rank 1 is found.
@article{FPM_2008_14_7_a17,
     author = {Pham Thi Thu Thuy},
     title = {Splitting length of {Abelian} mixed groups of torsion-free rank~1},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {209--221},
     publisher = {mathdoc},
     volume = {14},
     number = {7},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a17/}
}
TY  - JOUR
AU  - Pham Thi Thu Thuy
TI  - Splitting length of Abelian mixed groups of torsion-free rank~1
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 209
EP  - 221
VL  - 14
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a17/
LA  - ru
ID  - FPM_2008_14_7_a17
ER  - 
%0 Journal Article
%A Pham Thi Thu Thuy
%T Splitting length of Abelian mixed groups of torsion-free rank~1
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 209-221
%V 14
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a17/
%G ru
%F FPM_2008_14_7_a17
Pham Thi Thu Thuy. Splitting length of Abelian mixed groups of torsion-free rank~1. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 209-221. http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a17/