Simple and pseudosimple algebras with operators
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 189-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, algebras with operators, i.e., algebras with an additional system of unary operations acting as endomorphisms with respect to the basic operations, are considered. We find necessary conditions for the simplicity and pseudosimplicity of an arbitrary universal algebra with a fixed operator and explore how several properties of congruences of this algebra depend on the structure of the unary reduct of a given algebra. For algebras with one ternary operation, defined in the standard way and satisfying Mal'cev's identities, and one operator (i.e., unars with Mal'cev's operation), necessary and sufficient conditions for their simplicity and pseudosimplicity are obtained.
@article{FPM_2008_14_7_a16,
     author = {V. L. Usoltsev},
     title = {Simple and pseudosimple algebras with operators},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {189--207},
     publisher = {mathdoc},
     volume = {14},
     number = {7},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a16/}
}
TY  - JOUR
AU  - V. L. Usoltsev
TI  - Simple and pseudosimple algebras with operators
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 189
EP  - 207
VL  - 14
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a16/
LA  - ru
ID  - FPM_2008_14_7_a16
ER  - 
%0 Journal Article
%A V. L. Usoltsev
%T Simple and pseudosimple algebras with operators
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 189-207
%V 14
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a16/
%G ru
%F FPM_2008_14_7_a16
V. L. Usoltsev. Simple and pseudosimple algebras with operators. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 189-207. http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a16/

[1] Egorova D. P., “Struktura kongruentsii unarnoi algebry”, Uporyadochennye mnozhestva i reshetki, Mezhvuz. nauch. sb., Vyp. 5, Izd-vo Saratov. un-ta, Saratov, 1978, 11–44 | MR

[2] Kartashov V. K., “O reshëtkakh kvazimnogoobrazii unarov”, Sib. mat. zhurn., 26:3 (1985), 49–62 | MR | Zbl

[3] Kartashov V. K., “Ob unarakh s maltsevskoi operatsiei”, Mezhdunar. seminar “Universalnaya algebra i ee prilozheniya”, Tez. soobsch., Volgograd, 1999, 32

[4] Kozhukhov I. B., “Polugruppy, nad kotorymi vse poligony rezidualno konechny”, Fundament. i prikl. mat., 4:4 (1998), 1335–1344 | MR | Zbl

[5] Kurosh A. G., Obschaya algebra, Lektsii 1969/1970 uchebnogo goda, Nauka, M., 1974 | MR

[6] Liber S. A., “Uporyadochennye $n$-koltsoidy nad multioperatornymi gruppami”, Mat. issledovaniya, 7:1 (1972), 83–97 | MR | Zbl

[7] L. A. Skornyakov (obsch. red.), Obschaya algebra, T. 2, Nauka, M., 1991 | Zbl

[8] Skornyakov L. A., “Obobscheniya modulei”, Moduli. III: Preprint, Novosibirsk, 1973, 22–27 | MR

[9] Usoltsev V. L., Minimalnye unarnye algebry s dvumya kommutiruyuschimi operatsiyami, Dep. v VINITI 31.12.96, No 3857-V96

[10] Khion Ya. V., “$\Omega$-koltsoidy, $\Omega$-koltsa i ikh predstavleniya”, Tr. MMO, 14, 1965, 3–47

[11] Kilp M., Knauer U., Mikhalev A. V., Monoids, Acts and Categories, Walter de Gruyter, Berlin, 2000 | MR | Zbl

[12] Loi N. V., Wiegandt R., “Subdirect irreducibility of algebras and acts with an additional unary operation”, Miskolc Math. Notes, 6:2 (2005), 217–224 | MR | Zbl

[13] Skornyakov L. A., “Unars”, Coll. Math. Soc. Janos Bolyai, 29 (1982), 735–743 | MR | Zbl

[14] Wenzel G. H., “Subdirect irreducibility and equational compactness in unary algebras $\langle A;f\rangle$”, Arch. Math. (Basel), 21 (1970), 256–264 | MR | Zbl