Acts over semilattices
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 151-156
In this paper, we consider acts over commutative semigroups of idempotents (semilattices). We prove that an act over a semilattice is a partially ordered set. We obtain a full description of acts over a finite chain and a necessary condition for a partially ordered set to be an act over some semilattice.
@article{FPM_2008_14_7_a12,
author = {M. Yu. Maksimovskiy},
title = {Acts over semilattices},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {151--156},
year = {2008},
volume = {14},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a12/}
}
M. Yu. Maksimovskiy. Acts over semilattices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 151-156. http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a12/
[1] Kozhukhov I. B., Maksimovskii M. Yu., “Ob avtomatakh nad polureshetkami”, Sistemnyi analiz i informatsionno-upravlyayuschie sistemy, ed. V. A. Barkhotkin, MIET, M., 2006, 19–34
[2] Avdeyev A. Yu., Kozhukhov I. B., “Acts over completely 0-simple semigroups”, Acta Cybernet., 14:4 (2000), 523–531 | MR | Zbl
[3] Kilp M., Knauer U., Mikhalev A. V., Monoids, Acts and Categories, Walter de Gruyter, Berlin, 2000 | MR | Zbl