Acts over semilattices
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 151-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider acts over commutative semigroups of idempotents (semilattices). We prove that an act over a semilattice is a partially ordered set. We obtain a full description of acts over a finite chain and a necessary condition for a partially ordered set to be an act over some semilattice.
@article{FPM_2008_14_7_a12,
     author = {M. Yu. Maksimovskiy},
     title = {Acts over semilattices},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {151--156},
     publisher = {mathdoc},
     volume = {14},
     number = {7},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a12/}
}
TY  - JOUR
AU  - M. Yu. Maksimovskiy
TI  - Acts over semilattices
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 151
EP  - 156
VL  - 14
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a12/
LA  - ru
ID  - FPM_2008_14_7_a12
ER  - 
%0 Journal Article
%A M. Yu. Maksimovskiy
%T Acts over semilattices
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 151-156
%V 14
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a12/
%G ru
%F FPM_2008_14_7_a12
M. Yu. Maksimovskiy. Acts over semilattices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 151-156. http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a12/

[1] Kozhukhov I. B., Maksimovskii M. Yu., “Ob avtomatakh nad polureshetkami”, Sistemnyi analiz i informatsionno-upravlyayuschie sistemy, ed. V. A. Barkhotkin, MIET, M., 2006, 19–34

[2] Avdeyev A. Yu., Kozhukhov I. B., “Acts over completely 0-simple semigroups”, Acta Cybernet., 14:4 (2000), 523–531 | MR | Zbl

[3] Kilp M., Knauer U., Mikhalev A. V., Monoids, Acts and Categories, Walter de Gruyter, Berlin, 2000 | MR | Zbl