Prime and semiprime lattice ordered Lie algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 137-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concepts of prime Lie algebras and semiprime Lie algebras are important in the study of Lie algebras. The purpose of this paper is to investigate generalizations of these concepts to lattice ordered Lie algebras over partially ordered fields. Some results concerning the properties of $l$-prime and $l$-semiprime lattice ordered Lie algebras are obtained. A necessary and sufficient condition for a lattice ordered Lie algebra to be an $l$-prime Lie $l$-algebra is presented.
@article{FPM_2008_14_7_a10,
     author = {J. V. Kochetova},
     title = {Prime and semiprime lattice ordered {Lie} algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {137--143},
     publisher = {mathdoc},
     volume = {14},
     number = {7},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a10/}
}
TY  - JOUR
AU  - J. V. Kochetova
TI  - Prime and semiprime lattice ordered Lie algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 137
EP  - 143
VL  - 14
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a10/
LA  - ru
ID  - FPM_2008_14_7_a10
ER  - 
%0 Journal Article
%A J. V. Kochetova
%T Prime and semiprime lattice ordered Lie algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 137-143
%V 14
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a10/
%G ru
%F FPM_2008_14_7_a10
J. V. Kochetova. Prime and semiprime lattice ordered Lie algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 7, pp. 137-143. http://geodesic.mathdoc.fr/item/FPM_2008_14_7_a10/

[1] Kopytov V. M., “Uporyadochenie algebr Li”, Algebra i logika, 11:3 (1972), 295–325 | MR | Zbl

[2] Kopytov V. M., Reshetochno uporyadochennye gruppy, Nauka, M., 1984 | MR | Zbl

[3] Kochetova Yu. V., “O nekotorykh svoistvakh idealov reshëtochno uporyadochennykh algebr Li”, Vestn. SamGU. Estestvennonauchnaya ser. Matematika, 2007, no. 7(57), 73–83

[4] Kochetova Yu. V., “Pervichnye idealy reshëtochno uporyadochennykh algebr Li”, Mezhdunar. algebraicheskaya konf., posvyasch. 100-letiyu so dnya rozhdeniya A. G. Kurosha, Tezisy dokladov, M., 2008, 140–141

[5] Kochetova Yu. V., “Pervichnyi radikal reshetochno uporyadochennykh algebr Li”, Uspekhi mat. nauk, 63:5 (2008), 191–192 | MR | Zbl

[6] Kochetova Yu. V., Shirshova E. E., “O gomomorfizmakh chastichno uporyadochennykh algebr Li”, Izbrannye voprosy algebry, Sb. statei, posvyaschennyi pamyati N. Ya. Medvedeva, Izd-vo Altaiskogo un-ta, Barnaul, 2007, 131–142

[7] Kochetova Yu. V., Shirshova E. E., “O estestvennom gomomorfizme reshetochno uporyadochennykh algebr Li”, Mezhdunar. konf. po algebre i teorii chisel, posvyaschennaya 80-letiyu V. E. Voskresenskogo, Tezisy dokladov, Univers grupp, Samara, 2007, 29–30

[8] Pikhtilkov S. A., Strukturnaya teoriya spetsialnykh algebr Li, Izd-vo Tulskogo gos. ped. un-ta im. L. N. Tolstogo, Tula, 2005

[9] Fuks L., Chastichno uporyadochennye algebraicheskie sistemy, Mir, M., 1965 | MR