On quasiorder lattices and topology lattices of algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 5, pp. 85-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, it is shown that the dual $\widetilde{\mathrm{Qord}}\,\mathfrak A$ of the quasiorder lattice of any algebra $\mathfrak A$ is isomorphic to a sublattice of the topology lattice $\Im(\mathfrak A)$. Further, if $\mathfrak A$ is a finite algebra, then $\widetilde{\mathrm{Qord}}\,\mathfrak A\cong\Im(\mathfrak A)$. We give a sufficient condition for the lattices $\widetilde{\mathrm{Con}}\,\mathfrak A$, $\widetilde{\mathrm{Qord}}\,\mathfrak A$, and $\Im(\mathfrak A)$ to be pairwise isomorphic. These results are applied to investigate topology lattices and quasiorder lattices of unary algebras.
@article{FPM_2008_14_5_a4,
     author = {A. V. Kartashova},
     title = {On quasiorder lattices and topology lattices of algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {85--92},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a4/}
}
TY  - JOUR
AU  - A. V. Kartashova
TI  - On quasiorder lattices and topology lattices of algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 85
EP  - 92
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a4/
LA  - ru
ID  - FPM_2008_14_5_a4
ER  - 
%0 Journal Article
%A A. V. Kartashova
%T On quasiorder lattices and topology lattices of algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 85-92
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a4/
%G ru
%F FPM_2008_14_5_a4
A. V. Kartashova. On quasiorder lattices and topology lattices of algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 5, pp. 85-92. http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a4/

[1] Kon P., Universalnaya algebra, Mir, M., 1968 | MR

[2] Kuzin V. A., “O reshëtkakh kvaziporyadkov unarov”, Mezhdunar. konf. “Algebra i eë prilozheniya”, Tezisy dokladov, Sibirskii federalnyi un-t, Izd. tsentr In-ta vychisl. modelirovaniya SO RAN, Krasnoyarsk, 2007, 81–82

[3] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970 | MR

[4] Orlov S. D., “O reshëtke dopustimykh topologii”, Uporyadochennye mnozhestva i reshëtki, Mezhvuz. nauch. sb., Vyp. 2, Saratov, 1974, 68–71 | MR | Zbl

[5] Pinus A. G., Khaida I., “O kvaziporyadkakh na universalnykh algebrakh”, Algebra i logika, 32:3 (1993), 308–325 | MR | Zbl

[6] Alexandroff P. S., “Diskrete Räume”, Matem. sb., 2(44):3 (1937), 501–519 | MR | Zbl

[7] Arnautov V. I., Glavatsky S. T., Mikhalev A. V., Introduction to the Theory of Topological Rings and Modules, Marcel Dekker, New York, 1996 | MR | Zbl

[8] Bogdanović S., Ćirić M., Petrović T., Imreh B., Steinby M., “Traps, cores, extensions and subdirect decompositions of unary algebras”, Fund. Inform., 38 (1999), 31–40 | MR

[9] Kartashova A. V., “On lattices of topologies of unary algebras”, J. Math. Sci., 114:2 (2003), 1086–1118 | DOI | MR | Zbl

[10] Steiner A. K., “The lattice of topologies: Structure and complementation”, Trans. Amer. Math. Soc., 122 (1966), 379–398 | DOI | MR | Zbl