Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2008_14_5_a2, author = {S. Ya. Grinshpon and T. A. Yeltsova}, title = {Homomorphic images of {Abelian} groups}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {67--76}, publisher = {mathdoc}, volume = {14}, number = {5}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a2/} }
S. Ya. Grinshpon; T. A. Yeltsova. Homomorphic images of Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 5, pp. 67-76. http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a2/
[1] Grinshpon S. Ya., “Vpolne kharakteristicheskie podgruppy abelevykh grupp i vpolne tranzitivnost”, Fundament. i prikl. mat., 8:2 (2002), 407–473 | MR | Zbl
[2] Grinshpon S. Ya., Eltsova T. A., “Gomomorfno ustoichivye abelevy gruppy”, Vestnik TGU, 2003, no. 280, 31–33
[3] Grinshpon S. Ya., Eltsova T. A., “Gomomorfnye obrazy abelevykh grupp”, Fundament. i prikl. mat., 13:3 (2007), 17–24 | MR
[4] Fuks L., Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974
[5] Fuks L., Beskonechnye abelevy gruppy, T. 2, Mir, M., 1977
[6] Nunke R. J., “Slender groups”, Bull. Amer. Math. Soc., 67 (1961), 274–275 | DOI | MR | Zbl
[7] Sasiada E., “Proof that every countable and reduced torsion-free Abelian group is slender”, Bull. Acad. Polon. Sci., 7 (1959), 143–144 | MR | Zbl