Homomorphic images of Abelian groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 5, pp. 67-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

For some classes of Abelian groups, an answer to the following question is presented: when the union of homomorphic images of a group is a subgroup of another group? In connection with this, the concept of a homomorphically stable group is introduced, and homomorphic stability of groups from different classes of Abelian groups is studied.
@article{FPM_2008_14_5_a2,
     author = {S. Ya. Grinshpon and T. A. Yeltsova},
     title = {Homomorphic images of {Abelian} groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {67--76},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a2/}
}
TY  - JOUR
AU  - S. Ya. Grinshpon
AU  - T. A. Yeltsova
TI  - Homomorphic images of Abelian groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 67
EP  - 76
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a2/
LA  - ru
ID  - FPM_2008_14_5_a2
ER  - 
%0 Journal Article
%A S. Ya. Grinshpon
%A T. A. Yeltsova
%T Homomorphic images of Abelian groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 67-76
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a2/
%G ru
%F FPM_2008_14_5_a2
S. Ya. Grinshpon; T. A. Yeltsova. Homomorphic images of Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 5, pp. 67-76. http://geodesic.mathdoc.fr/item/FPM_2008_14_5_a2/

[1] Grinshpon S. Ya., “Vpolne kharakteristicheskie podgruppy abelevykh grupp i vpolne tranzitivnost”, Fundament. i prikl. mat., 8:2 (2002), 407–473 | MR | Zbl

[2] Grinshpon S. Ya., Eltsova T. A., “Gomomorfno ustoichivye abelevy gruppy”, Vestnik TGU, 2003, no. 280, 31–33

[3] Grinshpon S. Ya., Eltsova T. A., “Gomomorfnye obrazy abelevykh grupp”, Fundament. i prikl. mat., 13:3 (2007), 17–24 | MR

[4] Fuks L., Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974

[5] Fuks L., Beskonechnye abelevy gruppy, T. 2, Mir, M., 1977

[6] Nunke R. J., “Slender groups”, Bull. Amer. Math. Soc., 67 (1961), 274–275 | DOI | MR | Zbl

[7] Sasiada E., “Proof that every countable and reduced torsion-free Abelian group is slender”, Bull. Acad. Polon. Sci., 7 (1959), 143–144 | MR | Zbl