One-element differential standard bases with respect to inverse lexicographical orderings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 121-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a simplified proof of the following fact: for all nonnegative integers $n$ and $d$ the monomial $y_n^d$ forms a differential standard basis of the ideal $[y_n^d]$. In contrast to Levi's combinatorial proof, in this proof we use the Gröbner bases technique. Under some assumptions we prove the converse result: if an isobaric polynomial $f$ forms a differential standard basis of $[f]$, then $f=y_n^d$.
@article{FPM_2008_14_4_a7,
     author = {A. I. Zobnin},
     title = {One-element differential standard bases with respect to inverse lexicographical orderings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {121--135},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a7/}
}
TY  - JOUR
AU  - A. I. Zobnin
TI  - One-element differential standard bases with respect to inverse lexicographical orderings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 121
EP  - 135
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a7/
LA  - ru
ID  - FPM_2008_14_4_a7
ER  - 
%0 Journal Article
%A A. I. Zobnin
%T One-element differential standard bases with respect to inverse lexicographical orderings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 121-135
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a7/
%G ru
%F FPM_2008_14_4_a7
A. I. Zobnin. One-element differential standard bases with respect to inverse lexicographical orderings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 121-135. http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a7/

[1] Zobnin A. I., “O standartnykh bazisakh v koltse differentsialnykh mnogochlenov”, Fundament. i prikl. mat., 9:3 (2003), 89–102 | MR | Zbl

[2] Zobnin A. I., Dopustimye uporyadocheniya i standartnye bazisy differentsialnykh idealov, Dis. $\dots$ kand. fiz.-mat. nauk, M., 2007

[3] Zobnin A. I., “Povedenie differentsialnykh standartnykh bazisov pri kompozitsii”, Fundament. i prikl. mat., 13:1 (2007), 109–134 | MR

[4] Koks D., Littl Dzh., O'Shi D., Idealy, mnogoobraziya i algoritmy, Mir, M., 2000

[5] Trushin D. V., “Ideal separant v koltse differentsialnykh mnogochlenov”, Fundament. i prikl. mat., 13:1 (2007), 215–227 | MR

[6] Carrà Ferro G., “Gröbner bases and differential algebra”, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Proc. 5th Int. Conf., AAECC–5 (Menorca, Spain, 1987), Lect. Notes Comput. Sci., 356, Springer, Berlin, 1989, 129–140 | MR

[7] Carrà Ferro G., “Differential Gröbner bases in one variable and in the partial case”, Math. Comput. Modelling, 25:8–9 (1997), 1–10 | MR | Zbl

[8] Carrà Ferro G., “A survey on differential Gröbner bases”, Gröbner Bases in Symbolic Analysis, Based on Talks Delivered at the Special Semester on Gröbner Bases and Related Methods (Linz, Austria, May 2006), Radon Ser. Comput. Appl. Math., 2, ed. M. Rosenkranz, Walter de Gruyter, Berlin, 2007, 77–108 | MR | Zbl

[9] Gallo G., Mishra B., Ollivier F., “Some constructions in rings of differential polynomials”, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Proc. 9th Int. Symp., AAECC–9 (New Orleans, LA, USA, 1991), Lect. Notes Comput. Sci., 539, Springer, Berlin, 1991, 171–182 | MR

[10] Kolchin E. R., Differential Algebra and Algebraic Groups, Academic Press, 1973 | MR | Zbl

[11] Kondratieva M. V., Levin A. B., Mikhalev A. V., Pankratiev E. V., Differential and Difference Dimension Polynomials, Kluwer Academic, 1999 | MR | Zbl

[12] Kondratieva M. V., Pankratiev E. V., Trushin D. V., Zobnin A. I., “Advantages and disadvantages of differential standard bases”, Acta Academiae Aboensis Ser. B, 67:2 (2007), 50–57

[13] Kondratieva M. V., Pankratiev E. V., Trushin D. V., Zobnin A. I., “Recent results on differential analogues of Gröbner bases (a summary report)”, Le Matematiche, 63:1 (2008), 49–54

[14] Levi H., “On the structure of differential polynomials and on their theory of ideals”, Trans. Amer. Math. Soc., 51 (1942), 532–568 | DOI | MR | Zbl

[15] Ollivier F., “Standard bases of differential ideals”, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Proc. 8th Int. Conf., AAECC–8 (Tokyo, Japan, 1990), Lect. Notes Comput. Sci., 508, Springer, Berlin, 1991, 304–321 | MR

[16] Ritt J. F., Differential Algebra, Colloquium Publications, 33, Amer. Math. Soc., New York, 1950 | MR | Zbl

[17] Sit W. Y., “The Ritt–Kolchin theory for differential polynomials”, Proc. Int. Workshop on Differential Algebra and Related Topics (Rutgers, The State University of New Jersey, New Brunswick, USA, November 2–3, 2000), ed. L. Guo, World Scientific, Singapore, 2002, 1–70 | MR | Zbl

[18] Zobnin A. I., “Essential properties of admissible orderings and rankings”, Proc. of the 64th Workshop on General Algebra “64. Arbeitstagung Allgemeine Algebra” (Olomouc, Czech Republic, May 30–June 2, 2002) and of the 65th Workshop on General Algebra “65. Arbeitstagung Allgemeine Algebra” (Potsdam, Germany, March 21–23, 2003), Contrib. Gen. Algebra, 14, ed. I. Chajda, Verlag Johannes Heyn, Klagenfurt, 2004, 205–221 | MR | Zbl

[19] Zobnin A. I., “Admissible orderings and finiteness criteria for differential standard bases”, Symbolic and Algebraic Computation, Proceedings Int. Symp., ISSAC 2005 (Beijing, China, July 24–27, 2005), ed. M. Kauers, ACM Press, 2005, 365–372 | MR