The principal kernels of semifields of continuous positive functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 87-107
Voir la notice de l'article provenant de la source Math-Net.Ru
This work is devoted to the research of kernel lattices of semifields of continuous positive functions defined on some topological space. It is established that they are lattices with pseudo-complement. New characterizations of the following properties of topological spaces are obtained in terms of kernels, predominantly principal kernels, and semifields of continuous functions: to be an F-space, to be a P-space, basical and extremal disconnectedness, pseudo-compactness, and finiteness.
@article{FPM_2008_14_4_a5,
author = {E. M. Vechtomov and D. V. Chuprakov},
title = {The principal kernels of semifields of continuous positive functions},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {87--107},
publisher = {mathdoc},
volume = {14},
number = {4},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a5/}
}
TY - JOUR AU - E. M. Vechtomov AU - D. V. Chuprakov TI - The principal kernels of semifields of continuous positive functions JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2008 SP - 87 EP - 107 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a5/ LA - ru ID - FPM_2008_14_4_a5 ER -
E. M. Vechtomov; D. V. Chuprakov. The principal kernels of semifields of continuous positive functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 87-107. http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a5/