The principal kernels of semifields of continuous positive functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 87-107

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to the research of kernel lattices of semifields of continuous positive functions defined on some topological space. It is established that they are lattices with pseudo-complement. New characterizations of the following properties of topological spaces are obtained in terms of kernels, predominantly principal kernels, and semifields of continuous functions: to be an F-space, to be a P-space, basical and extremal disconnectedness, pseudo-compactness, and finiteness.
@article{FPM_2008_14_4_a5,
     author = {E. M. Vechtomov and D. V. Chuprakov},
     title = {The principal kernels of semifields of continuous positive functions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {87--107},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a5/}
}
TY  - JOUR
AU  - E. M. Vechtomov
AU  - D. V. Chuprakov
TI  - The principal kernels of semifields of continuous positive functions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 87
EP  - 107
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a5/
LA  - ru
ID  - FPM_2008_14_4_a5
ER  - 
%0 Journal Article
%A E. M. Vechtomov
%A D. V. Chuprakov
%T The principal kernels of semifields of continuous positive functions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 87-107
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a5/
%G ru
%F FPM_2008_14_4_a5
E. M. Vechtomov; D. V. Chuprakov. The principal kernels of semifields of continuous positive functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 87-107. http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a5/