Matrices with different Gondran--Minoux and determinantal ranks over $\mathrm{max}$-algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 231-268
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathrm{GMr}(A)$ be the row Gondran–Minoux rank of a matrix, $\mathrm{GMc}(A)$ be the column Gondran–Minoux rank, and $\mathrm d(A)$ be the determinantal rank, respectively. The following problem was posed by M. Akian, S. Gaubert, and A. Guterman: Find the minimal numbers $m$ and $n$ such that there exists an $(m\times n)$-matrix $B$ with different row and column Gondran–Minoux ranks. We prove that in the case $\mathrm{GMr}(B)>\mathrm{GMc}(B)$ the minimal $m$ and $n$ are equal to 5 and 6, respectively, and in the case $\mathrm{GMc}(B)>\mathrm{GMr}(B)$ the numbers $m=6$ and $n=5$ are minimal. An example of a matrix $A\in\mathcal M_{5\times6}(\mathbb R_\mathrm{max})$ such that $\mathrm{GMr}(A)=\mathrm{GMc}(A^\mathrm t)=5$ and $\mathrm{GMc}(A)=\mathrm{GMr}(A^\mathrm t)=4$ is provided. It is proved that $p=5$ and $q=6$ are the minimal numbers such that there exists an $(p\times q)$-matrix with different row Gondran–Minoux and determinantal ranks.
@article{FPM_2008_14_4_a15,
author = {Ya. N. Shitov},
title = {Matrices with different {Gondran--Minoux} and determinantal ranks over $\mathrm{max}$-algebras},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {231--268},
publisher = {mathdoc},
volume = {14},
number = {4},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a15/}
}
TY - JOUR
AU - Ya. N. Shitov
TI - Matrices with different Gondran--Minoux and determinantal ranks over $\mathrm{max}$-algebras
JO - Fundamentalʹnaâ i prikladnaâ matematika
PY - 2008
SP - 231
EP - 268
VL - 14
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a15/
LA - ru
ID - FPM_2008_14_4_a15
ER -
Ya. N. Shitov. Matrices with different Gondran--Minoux and determinantal ranks over $\mathrm{max}$-algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 231-268. http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a15/