Matrices with different Gondran--Minoux and determinantal ranks over $\mathrm{max}$-algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 231-268.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathrm{GMr}(A)$ be the row Gondran–Minoux rank of a matrix, $\mathrm{GMc}(A)$ be the column Gondran–Minoux rank, and $\mathrm d(A)$ be the determinantal rank, respectively. The following problem was posed by M. Akian, S. Gaubert, and A. Guterman: Find the minimal numbers $m$ and $n$ such that there exists an $(m\times n)$-matrix $B$ with different row and column Gondran–Minoux ranks. We prove that in the case $\mathrm{GMr}(B)>\mathrm{GMc}(B)$ the minimal $m$ and $n$ are equal to 5 and 6, respectively, and in the case $\mathrm{GMc}(B)>\mathrm{GMr}(B)$ the numbers $m=6$ and $n=5$ are minimal. An example of a matrix $A\in\mathcal M_{5\times6}(\mathbb R_\mathrm{max})$ such that $\mathrm{GMr}(A)=\mathrm{GMc}(A^\mathrm t)=5$ and $\mathrm{GMc}(A)=\mathrm{GMr}(A^\mathrm t)=4$ is provided. It is proved that $p=5$ and $q=6$ are the minimal numbers such that there exists an $(p\times q)$-matrix with different row Gondran–Minoux and determinantal ranks.
@article{FPM_2008_14_4_a15,
     author = {Ya. N. Shitov},
     title = {Matrices with different {Gondran--Minoux} and determinantal ranks over $\mathrm{max}$-algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {231--268},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a15/}
}
TY  - JOUR
AU  - Ya. N. Shitov
TI  - Matrices with different Gondran--Minoux and determinantal ranks over $\mathrm{max}$-algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 231
EP  - 268
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a15/
LA  - ru
ID  - FPM_2008_14_4_a15
ER  - 
%0 Journal Article
%A Ya. N. Shitov
%T Matrices with different Gondran--Minoux and determinantal ranks over $\mathrm{max}$-algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 231-268
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a15/
%G ru
%F FPM_2008_14_4_a15
Ya. N. Shitov. Matrices with different Gondran--Minoux and determinantal ranks over $\mathrm{max}$-algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 231-268. http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a15/

[1] Akian M., Gaubert S., Guterman A., Linear independence over tropical semirings and beyond, , 2008, in press arxiv: 0812.3496v1[math.AC] | MR

[2] Akian M., Gaubert S., Guterman A., Tropical Linear Independence and Mean Payoff Games, Preprint

[3] Gondran M., Minoux M., “L'indépendance linéaire dans les dioïdes”, Bull. Direction Étudies Rech. Sér. C Math., Inform., 1 (1978), 67–90 | MR

[4] Izhakian Z., The tropical rank of a tropical matrix, , 2006; arxiv: org.math.AC/0604208v1arxiv: org.math.AC/0604208v2