The quasi-spectrum of divided powers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 213-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper investigates the structure of the quasi-spectrum of divided powers and its behavior under the Taylor homomorphism. General as well as stronger particular results are obtained. In particular, the answer for the Hurwitz series is stated.
@article{FPM_2008_14_4_a13,
     author = {D. V. Trushin},
     title = {The quasi-spectrum of divided powers},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {213--226},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a13/}
}
TY  - JOUR
AU  - D. V. Trushin
TI  - The quasi-spectrum of divided powers
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 213
EP  - 226
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a13/
LA  - ru
ID  - FPM_2008_14_4_a13
ER  - 
%0 Journal Article
%A D. V. Trushin
%T The quasi-spectrum of divided powers
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 213-226
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a13/
%G ru
%F FPM_2008_14_4_a13
D. V. Trushin. The quasi-spectrum of divided powers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 213-226. http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a13/

[1] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Faktorial, M., 2001

[2] Lambek I., Koltsa i moduli, Faktorial, M., 2005

[3] Razmyslov Yu. P., Vvedenie v teoriyu algebr i ikh predstavlenii, Nauka, M., 1991

[4] Eisenbud D., Commutative Algebra with a View toward Algebraic Geometry, Springer, Berlin, 1994 | MR

[5] Kolchin E. R., Differential Algebra and Algebraic Groups, Academic Press, New York, 1976 | MR

[6] Keigher W., “Quasi-prime ideals in differential rings”, Houston J. Math., 4 (1978), 379–388 | MR | Zbl

[7] Keigher W., “On the quasi-affine scheme of a differential ring”, Adv. Math., 42 (1981), 143–153 | DOI | MR | Zbl

[8] Keigher W., “Differential rings constructed from quasi-prime ideals”, J. Pure Appl. Algebra, 26 (1982), 191–201 | DOI | MR | Zbl

[9] Keigher W., “On the structure sheaf of a differential ring”, J. Pure Appl. Algebra, 27 (1983), 163–172 | DOI | MR | Zbl

[10] Keigher W., “On the ring of Hurwitz series”, Commun. Algebra, 25 (1997), 1845–1859 | DOI | MR | Zbl