Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2008_14_4_a13, author = {D. V. Trushin}, title = {The quasi-spectrum of divided powers}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {213--226}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a13/} }
D. V. Trushin. The quasi-spectrum of divided powers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 213-226. http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a13/
[1] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Faktorial, M., 2001
[2] Lambek I., Koltsa i moduli, Faktorial, M., 2005
[3] Razmyslov Yu. P., Vvedenie v teoriyu algebr i ikh predstavlenii, Nauka, M., 1991
[4] Eisenbud D., Commutative Algebra with a View toward Algebraic Geometry, Springer, Berlin, 1994 | MR
[5] Kolchin E. R., Differential Algebra and Algebraic Groups, Academic Press, New York, 1976 | MR
[6] Keigher W., “Quasi-prime ideals in differential rings”, Houston J. Math., 4 (1978), 379–388 | MR | Zbl
[7] Keigher W., “On the quasi-affine scheme of a differential ring”, Adv. Math., 42 (1981), 143–153 | DOI | MR | Zbl
[8] Keigher W., “Differential rings constructed from quasi-prime ideals”, J. Pure Appl. Algebra, 26 (1982), 191–201 | DOI | MR | Zbl
[9] Keigher W., “On the structure sheaf of a differential ring”, J. Pure Appl. Algebra, 27 (1983), 163–172 | DOI | MR | Zbl
[10] Keigher W., “On the ring of Hurwitz series”, Commun. Algebra, 25 (1997), 1845–1859 | DOI | MR | Zbl