Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2008_14_4_a1, author = {S. A. Abramov and A. A. Ryabenko}, title = {Indicial rational functions of linear ordinary differential equations with polynomial coefficients}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {15--34}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a1/} }
TY - JOUR AU - S. A. Abramov AU - A. A. Ryabenko TI - Indicial rational functions of linear ordinary differential equations with polynomial coefficients JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2008 SP - 15 EP - 34 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a1/ LA - ru ID - FPM_2008_14_4_a1 ER -
%0 Journal Article %A S. A. Abramov %A A. A. Ryabenko %T Indicial rational functions of linear ordinary differential equations with polynomial coefficients %J Fundamentalʹnaâ i prikladnaâ matematika %D 2008 %P 15-34 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a1/ %G ru %F FPM_2008_14_4_a1
S. A. Abramov; A. A. Ryabenko. Indicial rational functions of linear ordinary differential equations with polynomial coefficients. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 15-34. http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a1/
[1] Abramov S. A., “Zadachi kompyuternoi algebry, svyazannye s poiskom polinomialnykh reshenii lineinykh differentsialnykh i raznostnykh uravnenii”, Vestn. Mosk. un-ta. Ser. 15. Vychislitelnaya matematika i kibernetika, 1989, no. 3, 53–60
[2] Abramov S. A., “Ratsionalnye resheniya lineinykh differentsialnykh i raznostnykh uravnenii s polinomialnymi koeffitsientami”, ZhVM i MF, 29:11 (1989), 1611–1620 | MR | Zbl
[3] Abramov S. A., “Ratsionalnye resheniya lineinykh raznostnykh i $q$-raznostnykh uravnenii s polinomialnymi koeffitsientami”, Programmirovanie, 1995, no. 6, 3–11 | MR | Zbl
[4] Abramov S. A., “Postroenie opredelyayuschikh ratsionalnykh funktsii lineinykh obyknovennykh differentsialnykh uravnenii s polinomialnymi koeffitsientami”, Mezhdunar. konf. “Differentsialnye uravneniya i topologiya”, posvyaschënnaya 100-letiyu so dnya rozhdeniya L. S. Pontryagina, Tezisy dokladov, 2008, 86–87
[5] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1965 | MR
[6] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, Izd. inostr. lit., M., 1958
[7] Bronstein M., “Integration and differential equations in computer algebra”, Programmirovanie, 1992, no. 5, 26–44 | MR
[8] Van Hoeij M., “Rational solutions of linear difference equations”, Proc. of the 1998 Int. Symp. on Symbolic and Algebraic Computation, ISSAC' 98 (Rostock, Germany, August 13–15, 1998), ed. O. Gloor, ACM Press, New York, 1998, 120–123 | MR | Zbl
[9] Monagan M. B., Geddes K. O., Heal K. M., Labahn G., Vorkoetter S. M., McCarron J., DeMarco P., Maple 11 Introductory Programming Guide, Waterloo Maple Inc., 2007
[10] Petkovšek M., Wilf H. S., Zeilberger D., $A=B$, Peters, 1996 | MR | Zbl
[11] Singer M. F., “Liouvillian solutions of $n^\mathrm{th}$ order homogeneous linear equations”, Amer. J. Math., 103:4 (1981), 661–682 | DOI | MR | Zbl