Indicial rational functions of linear ordinary differential equations with polynomial coefficients
Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 15-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of indicial rational function is introduced for ordinary differential equations with polynomial coefficients and polynomial right-hand sides, and algorithms for its construction are proposed.
@article{FPM_2008_14_4_a1,
     author = {S. A. Abramov and A. A. Ryabenko},
     title = {Indicial rational functions of linear ordinary differential equations with polynomial coefficients},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {15--34},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a1/}
}
TY  - JOUR
AU  - S. A. Abramov
AU  - A. A. Ryabenko
TI  - Indicial rational functions of linear ordinary differential equations with polynomial coefficients
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2008
SP  - 15
EP  - 34
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a1/
LA  - ru
ID  - FPM_2008_14_4_a1
ER  - 
%0 Journal Article
%A S. A. Abramov
%A A. A. Ryabenko
%T Indicial rational functions of linear ordinary differential equations with polynomial coefficients
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2008
%P 15-34
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a1/
%G ru
%F FPM_2008_14_4_a1
S. A. Abramov; A. A. Ryabenko. Indicial rational functions of linear ordinary differential equations with polynomial coefficients. Fundamentalʹnaâ i prikladnaâ matematika, Tome 14 (2008) no. 4, pp. 15-34. http://geodesic.mathdoc.fr/item/FPM_2008_14_4_a1/

[1] Abramov S. A., “Zadachi kompyuternoi algebry, svyazannye s poiskom polinomialnykh reshenii lineinykh differentsialnykh i raznostnykh uravnenii”, Vestn. Mosk. un-ta. Ser. 15. Vychislitelnaya matematika i kibernetika, 1989, no. 3, 53–60

[2] Abramov S. A., “Ratsionalnye resheniya lineinykh differentsialnykh i raznostnykh uravnenii s polinomialnymi koeffitsientami”, ZhVM i MF, 29:11 (1989), 1611–1620 | MR | Zbl

[3] Abramov S. A., “Ratsionalnye resheniya lineinykh raznostnykh i $q$-raznostnykh uravnenii s polinomialnymi koeffitsientami”, Programmirovanie, 1995, no. 6, 3–11 | MR | Zbl

[4] Abramov S. A., “Postroenie opredelyayuschikh ratsionalnykh funktsii lineinykh obyknovennykh differentsialnykh uravnenii s polinomialnymi koeffitsientami”, Mezhdunar. konf. “Differentsialnye uravneniya i topologiya”, posvyaschënnaya 100-letiyu so dnya rozhdeniya L. S. Pontryagina, Tezisy dokladov, 2008, 86–87

[5] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1965 | MR

[6] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, Izd. inostr. lit., M., 1958

[7] Bronstein M., “Integration and differential equations in computer algebra”, Programmirovanie, 1992, no. 5, 26–44 | MR

[8] Van Hoeij M., “Rational solutions of linear difference equations”, Proc. of the 1998 Int. Symp. on Symbolic and Algebraic Computation, ISSAC' 98 (Rostock, Germany, August 13–15, 1998), ed. O. Gloor, ACM Press, New York, 1998, 120–123 | MR | Zbl

[9] Monagan M. B., Geddes K. O., Heal K. M., Labahn G., Vorkoetter S. M., McCarron J., DeMarco P., Maple 11 Introductory Programming Guide, Waterloo Maple Inc., 2007

[10] Petkovšek M., Wilf H. S., Zeilberger D., $A=B$, Peters, 1996 | MR | Zbl

[11] Singer M. F., “Liouvillian solutions of $n^\mathrm{th}$ order homogeneous linear equations”, Amer. J. Math., 103:4 (1981), 661–682 | DOI | MR | Zbl